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Abstract. The ability to decompose large tasks into smaller subtasks
allows humans to solve complex problems step-by-step. To transfer this
ability to an automated system, we propose a spiking neural network in-
spired by the neurobiological mechanics of spatial cognition to represent
space on multiple levels of abstraction. As behavioral experiments suggest
that humans integrate spatial knowledge in a graph of places, neurons in
the state-action network encode locations while connections between them
represent transition actions. In a series of simulation experiments, the in-
fluence of hierarchy on planning speed and on the resulting route choice in
comparison to single-level models is investigated. We find that the model
chooses biased subgoals in line with experiments on human navigation.

1 Introduction

Evidence for the use of hierarchical representations for decomposition of com-
plex tasks is ample and its advantages have frequently been discussed [1, 2, 3].
One approach to model it, is Hierarchical Reinforcement Learning [2, 3] (HRL).
There, memorization of longer state-action sequences with known subgoals, so-
called ”options”, is introduced. The issue then shifts to how these options are
learned, termed the ”option discovery problem” [2]. In this work, a different
approach is presented, in which the hierarchical structure of the environment
is explicitly represented. Thereby, we address the shortcoming of mechanistic,
neural-level models for hierarchical problem-solving. As suggested in previous
work on graph-based navigation [4, 5], the state-action network proposed here
is a set of environmental states (the neurons/nodes) connected by transition
actions (the synapses/edges). It is then hierarchized by a layer of region neu-
rons to represent extended areas, for example districts within a city, an island
surrounded by water or even a whole country. Indeed, evidence for neurons
encoding larger navigation segments has been found by [6].

Human navigation in regionalized environments underlies two strong biases.
In an experimental study by Wiener et al. [1], subjects first explored a virtual
environment and were then asked to navigate to a given landmark. The envi-
ronments were divided into multiple regions either by clear boundaries (a river)
or common landmark categories (animals, cars). When choosing among equally
long paths to the goal, subjects preferred routes that crossed less region borders.
Interestingly, they also showed a strong bias to access the region containing the
goal as quickly as possible, neglecting alternative routes of equal length. In
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Fig. 1: Components of the hierarchical state-action network. Left: Each synaptic
connection between neurons is linked to a transition action that participates in
voting when active. Strong synapses (bold) dominate the voting process and
result in motion (red vector on the right) towards the goal marked by a circle.
Strengthening of goal-directed connections is a result of the planning process
described in the main text. Right: Region neurons (shown enlarged) represent
extended areas in space. Each region neuron is bidirectionally connected to each
lower-level neuron within its region (connections omitted for clarity).

this paper, a similar setting is used to assess model behavior at region transi-
tions, since these are critical points for hierarchical planning systems. We study
interaction of the hierarchical network with a biologically plausible planning
mechanism from [7] who applied it to single-level networks that lacked explicit
action representation. This planning mechanism can be executed in parallel, in
contrast to serial graph searches such as Dijkstra’s algorithm in [4]. Simulation
experiments firstly focus on the influence of hierarchical structure on planning
time, as faster planning would be a major advantage for natural and artificial
system, and secondly on route choice.

2 Path-planning in neural state-action networks

Each neuron in the state-action network illustrated in Figure 1 encodes a mem-
orized state in the environment. This can be a visual feature of an object in the
environment, for example a landmark. When the agent recognizes this feature,
the respective neuron receives a sensory input current. Together with the global
inhibitory current, the position of the agent is then encoded in a localized bump
of activity [7], a distributed representation. Connections between neurons are
bidirectional and represent transition vectors as shown in Figure 1. Since this
work focuses on planning, we assume the network structure to be given and refer
to [4] for unsupervised learning of state-action networks.

For path-planning, both sensory input and the global inhibitory system are
turned off and the neurons corresponding to the goal location are activated. This
leads to a wave of activity propagating throughout the network. As the wave
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passes, goal-directed connections are strengthened [7]. This is achieved through
the use of a time-dependent update rule for synaptic weights that requires the
use of spiking neurons. As neuron k spikes after neuron j, the connection from
k to j, wkj , becomes stronger than the opposing connection from j to k:

dwkj(t)

dt
= δ(sk) ·A− ·

(
1 − exp

(
−sj
τ0

))
exp

(
− sj
τSTDP

)
(1)

Here, A− is a constant regulating the strength of the weight update, sj and sk
denote the time since the last spike of neuron j and k respectively. τ0 � τSTDP

and τSTDP are time constants. Evidence for such a mechanism that requires only
locally available information has been found for instance by [8]. After planning,
sensory input is turned on again and restores the activity bump at the agent’s
current location (black neurons in Figure 1). The action to execute is then
determined by a voting process, in which actions (vectors in squares in Figure
1) are weighted by both synaptic weights and presynaptic neuronal activity.
Phrased differently, during navigation the agent follows a synaptic vector field
(SVF) assigning a vectorial action to each position.

3 Results

Increased planning speed To test the influence of hierarchical structure upon
planning speed, a two-dimensional network of 24×24 neurons is set up. Each
neuron is bidirectionally connected to neighbors one (with wP1 = 6, Figure 1)
and two edges (wP2 = 1) away on the grid. Wavefront propagation in this single-
level network is compared to hierarchical networks with an additional layer of
2×2 (respectively 3×3 and 4×4) neurons. These region neurons are connected to
neighboring region neurons with wRR = 3 and to the lower-level with wPR = 2.
Since it can be assumed that regions overlap, neurons on borders are connected
to region neurons of all adjacent regions (cf. Figure 1) with reduced synaptic
weights to normalize input from the higher layer.

A wave of spiking activity is initiated by activating the goal neuron in the
upper right corner of the network, creating a goal-directed SVF as it propagates
(Figures 2a-c). In the hierarchical networks, the wave travels on both levels.
As shown in Figure 2d, addition of the second layer drastically speeds up the
planning process. Until all neurons are activated, the single-level network takes
55.6 ms, compared to 32.4 ms of the network with 2×2 regions (not shown),
35.6 ms (3×3) and 38.2 ms for the network with 4×4 regions. This equals a
reduction of planning time by up to 42%.

Influence of hierarchy on route choice Following the design of an experiment on
human navigation by [1], we set up an environment of discrete places arranged
on a grid and distributed across two islands interconnected by bridges (Figure
3). As in [1], the agent is placed on a crossroad and must navigate to a given
place on the opposing island. To determine the influence of hierarchical network
structure, we compare two agents: one with a single-level representation of the
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(a) Single-level (b) Hierarchical (3×3 regions)

(c) Hierarchical (4×4 regions) (d) Duration of planning period

Fig. 2: Influence of hierarchical structure on planning time. (a): Activity in
a single-level network after 30 ms. (b) and (c): same as (a) for hierarchical
networks of different region sizes, as illustrated by black lines. Regions neurons
are shown in increased size. (d): Influence of region size on planning speed (2×2
corresponds to the largest regions).

environment and a second one with an additional region neuron for each of the
two islands. Network connectivity follows the previously described simulation.

In the planning phase, the neuron representing the goal is activated. In the
single-level network, the resulting activity wave spreads radially from the goal
(Figure 3a), whereas in the hierarchical network, it propagates quicker inside
the region containing the goal neuron (Figure 3b) and then slows down at the
border. Again, wave propagation is faster in the hierarchical network. The
resulting SVFs are oriented towards the goal, but in the hierarchical network,
vectors within the left region tend to point stronger to the goal region than in
the single-level network. Figures 3c) and d) show the resulting trajectories of an
agent that is limited to discrete transitions between the places: these are shown
as black horizontal or vertical lines whose thickness indicates the frequency with
which each step was chosen. The grey band shows the average trajectory calcu-
lated from all node-to-node paths. The single-level model chooses paths leading
straight to the goal. In contrast, the hierarchical model displays a preference to
reach the goal region as quickly as possible as indicated by the bent grey line.
Both models reliably reach the goal on an optimal (shortest possible) route: the
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(a) Without hierarchy after 32 ms (b) With hierarchy after 25 ms

(c) Without hierarchy (d) With hierarchy

Fig. 3: Influence of hierarchy on route choice. (a) and (b): Wavefront propaga-
tion from the goal marked by the circle in networks without and with hierarchical
structure. For the latter, region neurons are shown in increased size. (c) and
(d): SVF established by the wave and resulting trajectories.

single-level model in 88% of trials and the hierarchical model in 90%. Note that
here all trajectories consisting of rightward and upward steps in the figure have
the same total length (are optimal).

4 Discussion

Addition of a hierarchically superordinate layer to the network leads to an in-
crease in planning speed as well as behavioral effects in line with studies on
human navigation. Compared to their single-level counterparts, the hierarchical
networks took much less time for the planning process. The increase in wave
velocity resulted from an activity wave in the higher layer that provided synaptic
input to the wavefront on the lower level. Larger regions provide an advantage
here (Figure 2d), but it can be assumed that there is an optimal granularity. As
regions become larger, the activity wave on the higher level speeds up, and in
the extreme case decays before it can provide input to the lower-level wave.

Simulation experiments on navigational behavior of the model show that a
virtual agent, equipped with neurons to represent regions, set the closest tran-
sition point to the goal region as a subgoal for navigation, disregarding equally
short alternatives. This effect was caused by the altered shape of the propagat-
ing wavefront: Activation of a region neuron provided additional synaptic input
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to all neurons within that region. This input then led to a quick wave traversal
of the goal region while transition to the neighboring region was more costly,
slowing the wave down at the borders (Figure 3b). From there, it propagated
perpendicularly to the borders – in contrast to the wavefront of the single-level
networks that spread radially from the goal (Figure 3a). The resulting SVF of
the hierarchical network was thus biased towards region transitions and with it
the resulting path choices. This observation is in line with behavior of human
subjects [1] that preferred to reach the goal region as quickly as possible, too.
Here, model behavior is in contrast to HRL. If, in HRL, options are chosen purely
based on the reward structure of the environment, all paths of equal length will
be selected with equal probability, as can also be expected from breadth-first
path searches. Compared to HRL, subgoal selection is much more straightfor-
ward in our model, where it is simply a result of altered wavefront propagation,
whereas in HRL it leads to the option discovery problem [2]. To allow for task-
domains beyond navigation, states and actions in the present model would have
to be generalized similarly to implementations of HRL [3].

5 Conclusion

The proposed model combines a multilayered state-action network with bio-
inspired planning. When investigating model behavior, we found that it selects
subgoals in line with human subjects. In combination with the model’s biological
plausibility, this poses it as a candidate explanation for hierarchical navigation,
although experimental evidence is not conclusive yet. Computationally, the
parallel nature of the propagating wavefront in combination with an increased
planning speed through hierarchical structure provides a strong advantage over
serial graph searches. The network is thus an attractive solution for autonomous
vehicles, captures the advantages of hierarchical representations, and can be
implemented energy efficiently in spiking neuromorphic hardware.
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