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Abstract. In this article, we introduce a deep learning model (denoted
thereafter DCM: Deep Contextual Model) for survival analysis able of pre-
dicting the probability that a subject meets an event of interest according
to its past life. The subject and the event of interest can be diverse depend-
ing on the field of application, thus the model can be applied in various
contexts. We present an application in the aerospace field that consists in
forecasting hot corrosion in turbofan.

1 Introduction

Survival analysis is a branch of statistics that aims to predict the time until an
event of interest occurs. Various kinds of events of interest can be considered
depending on the field of application. In the context of predictive maintenance,
it is often the time to failure (see for example [1] in the aeronautical field).

When it is relevant, many survival analysis methods allow to model the time
before event according to some explanatory variable Xi describing the subject i.
In this paper, we introduce a model that is able to estimate the time before an
event according to a time series (Xt)t∈N (which represents the context). Indeed,
in many fields where survival analysis is applied, data describing the past life of
the subject are available.

In the case of predictive maintenance, many complex devices are equipped
with several digital sensors which produce data throughout the device life. Al-
though sensors may not be intended for predictive maintenance, they can provide
meaningful information on the health status of the devices. Thus, these data can
be used to predict the probability of an event of interest to occur. Especially if
this event of interest is correlated with an abnormal operation of the device.

This paper is organized as follows. Section 2 introduces the problem of sur-
vival analysis with times series, Section 3 describes the proposed model, Section
4 gives an application in the aeronautical field and section 5 concludes the article.

2 Framework

2.1 Background on survival analysis

Like all statistical models, survival models need to be fitted on data. Survival
data can be represented by a tuple (t, c) where t is a time and c a label. Survival
data can be
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• Uncensored. In this case, the event of interest occurs exactly at the
instant t and we denote c = 0.

• Right censored. At the instant t, the event of interest did not yet occur
(but it may in the future). We denote c = −1.

• Left censored. At the instant t, the event of interest already occurred.
But we didn’t know when. We denote c = 1.

The main goal is to approach the survival function (denoted thereafter S(t))
which gives the probability that a subject did not meet the event before t.
Alternatively, we can approach the function W (t) = 1 − S(t) that gives the
probability that a subject meets the event before t.

2.2 Models for survival analysis

A wide range of methods have been developed, it includes non-parametric meth-
ods such as the Kaplan Meier estimator, semi-parametric methods such as Cox
model, and parametric methods. For example, a parametric model widely used
for materials degradation is the Weibull distribution (see [2]). Information and
references concerning standard models in survival analysis can be found in [3].

Models based on machine learning have also been proposed, (see the survey
[4] for an overview). In particular, deep learning models have also been proposed,
they are often associated with the previously existing parametric model (see for
example [5] and the model deep survival which extends Cox model). Models
relying on recurrent networks (such as [6]) have shown promising results. Our
model: DCM (Deep Contextual Model) falls into this category but differs from
previous works on several points. In particular, DCM exploits a time series
describing the past life of the subject (its context).

2.3 Survival analysis with time series

Usual survival machine learning models take advantage of vectors Xi describing
the subject number i. It allows fitting one survival function Si(t) by subject.
In this article, we assume to have a time series (Xi

t)t∈[1,ni] by subject i. Each
data Xi

t is a partial description of the state of the subject i at time t. Thus,
we try to estimate a survival function Si(n) that depends on the past life (the
context) of this subject (which is the time series (Xi

t)t∈[1,n]). Consequently, this
approach is relevant only if we can assume that the event of interest is correlated
to the past life of the subject.

We emphasize that an observation Xi
t does not necessarily contain direct

information on the event of interest. Especially, we may not know if the event
occurred before time t (it is the case if the event of interest requires specific
inspections that can’t be frequently done).

Under our framework, the subject i is described by the tuple (t, c, (Xi
t)t∈[1,ni])

where t is a time, c informs about the censorship and (Xi
t)t∈[1,ni]) is the time

series describing the subject i.
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3 Model

3.1 Overview

For one tuple (t, c, (Xi
t)t∈[1,ni]), our model aims to compute the probability that

the event of interest occurs before t. The computation is represented in the
Figure below.

Fig. 1: Computation of the event probability by DCM (i.e probability of the
event occurs before t).

DCM uses vectors Xt as inputs for the GRU block (Gated Recurrent Unit,
see [7]) which is a kind of recurrent neural network related to LSTM (Long
Short Term Memory). The GRU block computes a hidden state vector ht which
represents the health status of the subject at time t. Vector Xt and the hidden
state vector ht−1 are concatenated. The exposure model (fθ) computes damages
inflicted to the subject at time t (the vector of the damage features Vt). All
damage vectors Vt are summed, we keep the most critical feature τ = max(V ).
Finally, we use the total damage τ and a cumulative distribution function to
compute the event probability.

3.2 Exposure model and cumulative distribution function

The exposure model (denoted fθ in Figure 1) computes damages inflicted at
time t. Lots of choices are possible according to the structure of data Xt, in our
application fθ is a dense neural network.

The cumulative distribution must be chosen according to the problem. To
this end, previously existing parametric models can be very helpful. Indeed, we
can select a parametric model known to work well in similar problems. With
this logic, we select the Weibull law [2] with its two interpretable parameters
(see Section 4).

325

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



3.3 Learning

Parameters appearing in our model must be optimized. It includes parameters
from the GRU block, parameters from the exposition model, and parameters from
the cumulative distribution function. They are all learned at the same time by
gradient descent. The gradient is computed from a loss function.

The likelihood is a common choice to measure the goodness of fit of a model.
Our objective is to converge towards parameters maximizing the likelihood. The
likelihood for samples i ∈ [1, n] is

L

((
(t, c, (Xi

t)t∈[1,ni]), Si

)
i∈[1,n]

)
=

n∏
i=1

Gi(t),

with Gi(t) =

⎧⎪⎨
⎪⎩
λi(t) if c = 0,

1− Si(t)) if c = −1,

Si(t) if c = 1.

Taking the negative log, we get

− ln
(
L(

(
(t, c, (Xi

t)t∈[1,ni]), Si

)
i∈[1,n]

)
)
= −

n∑
i=1

ln(Gi(t)).

Maximizing likelihood is equivalent to minimizing negative log-likelihood. It
leads to the following loss function for one sample.

L((t, c, (Xi
t)t∈[1,ni]), p̂) =

{
− ln(p̂) if c ≤ 0,

− ln(1− p̂) if c = 1,
(1)

where p̂ is the event probability computed by the model. Indeed, data are often
all censured moreover Gi(t) = p̂ if c = −1 and Gi(t) = 1− p̂ if c = 1.
This loss function corresponds to the binary cross-entropy loss.

4 Application

4.1 Health monitoring for aircraft engine

Ensuring the correct functioning of aircraft engines is a critical task and a strict
maintenance policy exists for each important component. Regular inspections of
the engine are scheduled to verify each component’s integrity. When an engine
is inspected, a component can be either changed or not. As a precaution, main-
tenance policies tend to be pessimistic and flag components to be replaced even
if far from failing. In this application, the event of interest is the moment when
one specific component reaches the limit indicated by its maintenance policy.

A commercial flight is classically divided into phases: TakeOff, Cruise etc.
At the beginning of each phase, sensors equipping the aircraft register data such
as altitude, engine thrust etc. Furthermore, we add environmental data, such as
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outdoor temperature and air concentration of certain pollutants at airport.
In this way, vectors Xi

t defined in Section 2.3 designed the aggregated data of the
flight number t for the engine number i and the time series (Xi

t)t∈[1,ni] stands
for the ni flights achieved by the engine i.

4.2 Forecasting hot corrosion

Hot corrosion is a physical phenomenon that can cause damages to different
metals exposed at high temperatures [8]. Predicting hot corrosion in turbofan
is a challenging issue because it involves several different physical phenomena
(corrosion of type 1, 2 and oxidation are confounded). Moreover, the kinetic of
these reactions depends on lots of factors: temperature, pressure, catalyst, etc.

We focus on one type of component of the aircraft engine. This component
is checked when the engine is inspected (regular inspections are scheduled over
the engine lifetime). If the component needs to be replaced because of hot
corrosion, we will consider that our event of interest already occurred, thus we
get a left-censored data (c = −1). Otherwise, it is a right-censored data (c = 1).

DCM is implemented in PyTorch. 32 engines are considered, the exposure
model fθ is a 3 layers dense neural network with 90 neurons by layer (10 for
the GRU). We add a dropout layer with p = 0.4 and a L2 penalty to reduce
over-fitting (w decay = 10−3). The learning rate is equal to 10−3.

We evaluate the model using a 10-folds cross-validation procedure. Each
engine is used only once in the validation set. We aggregate all results obtained
on validation sets and present them in the form of a ROC curve (see [9]).

Fig. 2: ROC curves of several models

DCM is compared to several others implemented using PySurvival [10]. It
includes the Cox model, the Weibull parametric model and DeepSurv (see [5]).
We used the package tsfresh (see [11]) to extract a vector of features Yi from
each times series (Xi

t)t∈[1,ni] describing flights achieved by the engine i. Then,
vectors Yi are used by Cox model and DeepSurv.
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It appears in Figure 2 that our model (DCM) performs better than baselines
(Cox model and Weibull parametric model) and a state-of-the-art alternative
solution (tsfresh features extraction + DeepSurv).

5 Conclusion

In this article, we introduced a new model for survival analysis. Its originality
lies in the use of a time series describing the past life of the subject to get more
relevant prediction.

In practice, the model relies on a recurrent neural network (GRU) to compute
a hidden state that represents the health status of the subject at any time.
Then it computes and accumulates damages inflicted to the subject at each
time. Eventually, accumulated damages are used as inputs for a cumulative
distribution function (that can be parametric) to compute the probability that
the event of interest already occurred.

We implemented the model and tested it with real data. We were interested
in computing the probability that a component of the aircraft engine will be
renewed because of hot corrosion.
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