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Abstract. Deep learning for graphs encompasses all those neural models
endowed with multiple layers of computation operating on data repre-
sented as graphs. The most common building blocks of these models are
graph encoding layers, which compute a vector embedding for each node
in a graph using message-passing operators.
In this paper, we provide an overview of the key concepts in the field, point
towards open questions, and frame the contributions of the ESANN 2021
special session into the broader context of deep learning for graphs.

1 Introduction

Deep learning for graphs refers to machine learning models with multiple layers
of abstraction, which receive graphs as input in order to solve a task. Recent
years have seen a surge of interest in deep learning for graphs [1] with tens
of thousands of new research papers published every year, according to google
scholar. In this fast evolving research field, it is easy to loose track of crucial
research achievements as well as pointing out fundamental remaining open ques-
tions [1, 2, 3]. In this paper, we review the cornerstones of this field, point to
key questions still open, and contextualize the six contributions to the ESANN
2021 special session Deep learning for graphs within current research directions.

2 Graph Theory

We define a (directed, attributed) graph as a quartuple G = (X , E , f, g), where
X is some finite set called nodes of the graph; E is a subset of X × X called
edges of the graph; f is a function f : X → Rn called node attribute function; g
is a function g : X ×X → Rn called edge attribute function. If (u, v) ∈ E implies
that (v, u) ∈ E , we call the graph undirected, otherwise directed. If no node or
edge attributes are given, we set f(x) = 0 and/or g(x, y) = 0. When visualizing
graphs, we draw nodes as circles while edges are arrows connecting the nodes
(see Figure 1). We visualize node and edge attributes using color-coding.

In the sequel, we assume that X = {1, . . . , N} for some N ∈ N, i.e., nodes
are numbered (identified) according to some arbitrary order.
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Fig. 1: Left: An example graph G. Center: The graph’s adjacency matrix AG .
Right: The graph’s node attribute matrix XG .

Matrix representation: For implementation, computational purposes, and for
expressing algebraic properties of the graphs, the set representation is often in-
convenient. In fact, most frameworks opt for a matrix/tensor representation. In
particular, a graph G = (X , E , f, g) can be represented as a triple (AG , XG ,EG),
where AG is an N ×N -matrix with ai,j = 1 if (i, j) ∈ E and ai,j = 0 otherwise,
called adjacency matrix ; XG is an N × n matrix with xi = f(i), called node
attribute matrix ; EG is an N × n × N tensor with ei,j = g(i, j), called edge
attribute tensor. Importantly, we note that the matrix representation is lossless,
meaning we can recover a graph from its matrix representation. In the following,
we will switch from the set to the matrix representation of a graph, whenever
convenient.

Graph permutation and isomorphism: As already mentioned, the ordering of
the nodes is arbitrary. Therefore, we consider two graphs to be equal if the
only difference between them is the order of their nodes. More precisely, we
say that two graphs G = (X , E , f, g) and G′ = (X ′, E ′, f ′, g′) are isomorphic
if X = X ′ = {1, . . . , N} and there exists a permutation matrix Π such that
XG = Π ·XG′ , AG = Π ·AG′ ·ΠT , and EG = Π ·EG′ ·ΠT .

Graph theory is a vast discipline that defines many of the concepts used
in deep learning for graphs. Important elements of graph theory that are not
covered in this paper include random walks and spectral analysis, both of which
play a fundamental role in several deep learning models [4]. We point the reader
interested to existing reviews on these topics to [1, 2, 3].

3 Deep Learning for graphs

Graph encoding layers: Most approaches for deep learning on graphs involve
some variant of the following mechanism. Let ϕ be a function ϕ : Rn×Rm → Rn′

and ψ be a function ψ : Rn × Rn × Rn → Rm for some m,n, n′ ∈ N. Further,
let G = (X = {1, . . . , N}, E , f, g) be a graph. The representation hi of node i is
computed as follows

hi = ϕ

f(i), ∑
j∈N (i)

mj,i

 , (1)
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Fig. 2: Left : A node i with two neighboring nodes j and k. Center : The messages
mj,i and mk,i from nodes j and k to node i, respectively, are computed according
to Eq. 2. Right : The representation of node i based on the two messages is
computed according to Eq. 1.

where
mj,i = ψ

(
f(i), f(j), g(i, j)

)
, (2)

is called the message sent from node j to node i and N (i) denotes a neighborhood
of i, typically defined as the set N (i) = {j|(j, i) ∈ E} [1, 5]. The operators
implementing Equations 1 and 2 are called graph encoding layers.

Figure 2 illustrates how the representation is computed. For each node i
of the graph, we first compute incoming messages mj,i for each pair (j, i) with
j ∈ N (i) via Equation 2. Then, we combine all incoming message with the
current node attribute f(i) via Equation 1.

Permutation-Equivariance: Graph encoding layers are designed to achieve per-
mutation-equivariance, meaning that isomorphic graphs are encoded in the same
way. More precisely, let Π be some permutation matrix. Then, the node rep-
resentations of a graph permuted with matrix Π is Π · H, where H are the
representations of the non-permuted graph [6].

While permutation-equivariance is important, it is not the only property that
should be implemented by a deep learning model for graphs. As a trivial exam-
ple, consider the graph encoding layer with ϕ(x, y) = 0 and ψ(x, y, e) = 0. The
resulting encoding is, clearly, permutation-equivariant but can only model con-
stant functions. More generally, a graph encoding layer should not only assign
the same representation to isomorphic graphs; it should also assign different
representations to non-isomorphic graphs. This is, however, more difficult to
achieve [7]. The distinguishing power of deep learning for graphs can be mea-
sured by the Weisfeiler-Lehmann test of isomorphism [8], which provably fails
for some types of graphs. In general, we do not yet know whether graph iso-
morphism can be verified in polynomial time at all [9], which points towards a
limitation of the expressive power of deep learning models for graphs.

Generality: The graph encoding layers defined above provide a highly general
framework. Many representation layers for graphs in the literature can be ob-
tained as special cases of graph encoding layers, where ψ, ϕ, and N follow spe-
cific implementations. This is covered in more detail by [1, 5]. Xu et el.[8] have
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further shown that any permutation-invariant function f over a set X can be
written in the form f(X) = ϕ

(∑
x∈X ψ(x)

)
for appropriate ϕ and ψ, indicating

that graph encoding layers capture all permutation-equivariant architectures.
Finally, Keriven and Peyré have proved that special cases of graph encoding
layers achieve a universal approximation property under certain assumptions
[10].

Deep representations: So far, we have focused on the operations performed
by a single graph encoding layer, which generates a new graph with the same
nodes and edges but where f(i) = hi and, optionally, g(i, j) = mi,j . Multiple
graph encoding layers can be applied in sequence to achieve a more complex
representation. Two approaches for stacking multiple layers are prominent in
the literature. First, recurrent architectures, like in graph neural networks [11]
or graph echo state networks [12, 13], apply the same graph encoding layer
recursively until convergence. This approach has the advantage of reducing the
number of parameters in the model. However, it poses the additional constraint
that ϕ and ψ must be designed in a way that ensures the recursion to converge,
e.g. the two function must implement a contractive map.

Alternatively, one can use a feed-forward architecture with fixed number
of layers, which can be different from each other. This is, arguably, the most
prominent version of deep learning for graphs to date [1]. This approach has been
pioneered by neural networks for graphs which train one layer at a time [14].
For a fixed number of layers, there is no convergence requirement and, if layers
are different, the model has more parameters to fit the data. Additionally, the
number of layers and the architecture of each layer are hyper-parameters which
need to be set. The “receptive field” of each node is limited by the maximum
number of layers. Accordingly, several approaches have attempted to extend the
receptive field by including nodes that are further away in the neighborhood,
while limiting the number of considered nodes, e.g. with random sampling [15].

Oversmoothing: Many graph encoding layers generate node representations that
become very similar to each other whenever too many layers are stacked, the
phenomenon is called oversmoothing [16]. Accordingly, many deep learning ar-
chitectures for graphs include only few layers (like two or three). Oono et al. [16]
have analyzed this problem from the perspective of dynamical systems and re-
lated it to contractive maps; i.e., if graph encoding layers are contractive maps,
then the system will naturally converge to a fixed point. Ironically, recurrent
graph neural networks avoid oversmoothing by deliberately designing contrac-
tive maps, but setting f(i) to the original node attributes at every iteration,
thus maintaining difference across nodes [11, 12, 13]. In feed-forward architec-
tures, oversmoothing can be avoided by implementing graph filters with a flexible
frequency response [4] or by leveraging incremental unsupervised learning [17].

Node-wise learning objectives: In tasks such as node classification/regression
and edge classification/regression, the learning objectives focus only on the in-
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Fig. 3: A sketch of a sequential graph decoding mechanism. Nodes get sampled
one-by-one. After each node sampling step, edges to already existing nodes are
sampled.

formation contained in the node or in edge representations. In particular, the
node (edge) representations are used as input for a classifier/regressor and the
overall model is trained by minimizing a classification/regression loss. Example
tasks of this nature are node classification in social networks [18], link prediction
between products and users for the purpose of recommendation [19], or traffic
flow prediction [20].

Graph-wise learning objectives: To perform graph classification or regression,
we require to generate a representation of the graph as a whole. We can achieve
such a representation via graph pooling, which aggregates the information across
nodes. The most common form of pooling is global pooling, which, in its simplest
form, just applies a sum, mean, or max operation across all nodes in the graph.
Alternatively, one can gradually reduce the size of the graph in a hierarchical
fashion by generating intermediate coarsened graphs [21, 22, 23].

Graph Decoding: So far, we covered the problem of encoding graphs into vec-
tors. However, in many applications we need to decode graphs from vectors,
such as in molecule design [24, 25, 26] or when performing time series prediction
[27]. A rough taxonomy partitions graph decoding approaches into two cate-
gories. First, decoders that predict an entire adjacency matrix at once. This
is typically achieved by sampling a matrix of node embeddings H, using it to
compute an affinity matrix Â = H · HT , and then recovering the actual adja-
cencies from the affinity matrix [24, 28]. Second, decoders that generate graphs
by a sequence of edits [27, 29, 30, 31], e.g., by first decoding a single node and
then connecting it to existing nodes, as illustrated in Figure 3. The former ap-
proach requires the size of the graph being known in advance, whereas the latter
approach requires that some order in which edits occur is provided at training
time. Both approaches suffer from severe restrictions in terms of generality, as
graphs can have arbitrary size and are isomorphic under permutation. Some
recent approaches offer a compromise by first determining the nodes of a graph
in a sequential fashion and, afterwards, all edges are generated in a single step
[27, 32].
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Time-varying graphs: Many real-world graphs change over time [33]. For ex-
ample, users enter or leave social networks and change their connections over
time [27]. Multiple methods combine deep learning for graphs with deep learn-
ing for time series to model spatio-temporal representations of graphs, especially
for traffic forecasting where traffic flows change during a day [2, 20]. Typically,
the combination is performed by including the representation ht−1

i from the pre-
vious time step as another input in Equation 1 and replacing ϕ with a recurrent
neural network, such as a GRU or an LSTM [2]. Note that this approach as-
sumes that the node set stays constant across time. Methods detecting changes
in stationarity/time variance in graph streams can be found in [34, 35].

Hypergraphs: Hypergraphs are a particular type of graphs with edges that can
have more than two end points. Applications include social networks, where
edges model interactions that can involve more than two people [36, 37]. To
represent hypergraphs, we exchange the adjacency matrix with an edge incidence
matrix H ∈ RN×M , where hi,k is 1 if node i is part of edge k and 0 otherwise
[36, 37]. Despite this modification, the node representations are still computed
as in Equations 1 and 2. It is possible to have also time-varying hypergraphs [38].

4 Open Questions

While deep learning for graphs has made impressive progress and is a fast-
evolving field, key open questions remain, such as:

Node-changing graphs: Many networks to date can deal with changes in node
attributes as well as changes in edges, as demonstrated by the vast literature
on spatio-temporal networks [2]. However, it is still an open problem how to
deal with changes in the node set. In that case, we cannot use ht−1

i as input for
ht
i because the entire node indexing may have changed over time [39]. Instead,

one has to summarize global structure of the graph at time t − 1 and use this
information to infer the node embeddings at time t. One approach following
this direction is EvolveGCN [39], which pools the node embeddings at time step
t − 1 to infer the parameters of the embedding functions ψ and ϕ at time t.
Conversely, graph edit networks only use embedding information at time t but
can predict changes in the node set via node deletions or insertions [27].

Generative models for highly structured and/or large graphs: Most generative
models for graphs assume a fixed (small) number of nodes and/or an order-
ing among them, which both severely restricts the generality of the models
[24, 28, 32]. While some recent approaches are more flexible in both respects
[27, 32], it remains a hard problem to accurately characterize the distribution
of large graphs. The most successful attempts in this direction exploit domain
knowledge to incorporate grammatical or other structural priors for simplify-
ing the hypothesis space. Promising results have been achieved for chemical
molecules [24, 25, 26] and computer programs [40, 27].
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Theory of deep learning for graphs: While theoretical studies have found cru-
cial relations between the Weisfeiler-Lehman test and the graph edit distance [8,
10, 27], it is still not fully clear how these connections relate to learning. For
example, if we consider a graph classification problem that would be solvable
with nonzero margin according to the graph edit distance, does this imply that a
properly configured deep learning approach for graphs can solve the classification
task? Further, while some progress has been made to reduce the issue of over-
smoothing in deep learning for graphs [4, 16], one could rely upon prior research
on recurrent neural networks for graphs to propose alternative solutions [11, 12].
Finally, we are missing a theory of graph decoding, which formalizes under which
conditions it is possible to recover a graph from a vectorial encoding and how
accurately we can learn a given distribution of graphs.

5 Special Session Contributions

The contributions to the ESANN 2021 special session Deep Learning for Graphs
cover a wide range of the topics discussed so far.

Tortorella and Micheli [41] propose Dynamic Graph Echo State Networks to
generate spatio-temporal embeddings of time-varying graphs without any need
for training. Experimentally, they show that a linear classifier on top of these
embeddings performs as well as spatio-temporal graph kernels, which are more
computationally expensive.

Do Nascimento et al. [42] modify the graph variational autoencoder archi-
tecture of [28] by replacing graph convolutional layers with linear layers, sum
or concatenate the output of multiple layers, and add messages across multiple
hops. Together, these changes improve the link prediction accuracy both with
and without node features on several benchmarks.

Hermes, Hammer, and Schilling [43] develop a variant of GraphWaveNet to
predict human skeletal motion. The proposed variant utilizes domain knowlegde
in that messages are passed outward along the human skeleton. This allows to
reduce about 90% of the parameters used by other state-of-the-art models, while
achieving similar performance.

Pasa, Navarin, and Sperduti [44] propose Tangent Graph Convolutional Net-
works, which implements the message function ψ from Equation 2 as ψ(x, y, e) =
x−y, i.e. as the difference between adjacent node embeddings. In addition, mes-
sages are projected into the space of typical differences via an orthonormal basis
transformation. These changes improve graph classification compared to several
popular baseline models on several benchmarks.

Cofala and Kramer [45] study the graph decoding problem for chemical
molecules and represent such molecules as sequences of atoms, including atom
features and their bonds to other atoms in the molecule. Then, these sequences
are represented using transformers from natural language processing. A new
molecule is sampled one atom at a time, beginning with a special begin-of-
molecule token and continuing until an end-of-molecule token is generated. In-
terestingly, this sequence-based model approaches the performance of models
with a much higher amount of injected domain knowledge.
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Finally, Trincavelli et al. [46] propose a two-stage approach for link predic-
tion in highly sparse graphs. Such graphs are a challenge because many nodes
have few or no neighbors, meaning that little to no messages arrive. The pro-
posed scheme first uses an inductive network to enrich the input graph with
auxiliary edges and then refines the prediction with a transductive model. For
all deep learning architectures considered in the experiments, the inductive pre-
processing step significantly improved the link prediction performance.

6 Conclusions

Deep learning for graphs remains a highly dynamic research field with tens of
thousands of research contributions every year. To provide an overview, we
discussed key concepts that appear in many recent works. In particular, we pre-
sented message-passing-based graph encoding layers which ensure permutation-
equivariance, the relation of graph encoding layers to the Weisfeiler-Lehman test
of isomorphism, the generality of graph encoding layers, how graph encoding lay-
ers can be stacked to deep networks, how some graph encoding layers have the
tendency to oversmooth node representations, how node and edge embeddings
can form graph representations, how graphs can be decoded from node encod-
ings, and how deep learning on graphs can be generalized to time-varying graphs
and hypergraphs.

While acknowledging the impressive progress in the field, we also pointed
towards three areas that pose open research questions, namely how to handle
changes in the number of nodes, how to accurately decode large graphs, and need
of further theoretical developments. Finally, we contextualized the contributions
to the ESANN 2021 special session on Deep learning for graphs into this research
field. The special session contributions push the field both towards simpler
yet high-performing models and towards models that exploit new strategies to
improve the performance on given tasks.
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