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Abstract. The powered two-wheelers (PTW) are among the most vul-
nerable transport users. It is crucial to identify the appropriate action that
should be undertaken during a specific situation to reduce the risk. In this
article, the aim is to improve the current state of the art in identification of
riding patterns through neural network architectures and to explain how
a decision is made by a model which is considered as a black box. In this
regard, a new visualization tool specific to time series is suggested to help
identify the most influential factors and hopefully to develop appropriate
risk mitigation strategies.

1 Introduction

In past years, road safety has become a priority for the governments of European
countries and abroad. While road safety in the EU has improved considerably
in recent decades, the number of deaths and injuries is still unacceptably high.
While statistics show a substantial decline in the number of fatalities on the road
for four-wheeled vehicles, in the category of Powered Two-Wheelers (PTWs), the
statistics show only a minor reduction with a constant decrease (approximately
2%), in France, for instance1.

Road accidents are events that can be based on complex and hardly pre-
dictable mechanisms. However, it has been shown in the literature that driver
behavior and driver errors are major causes of vehicular accidents [1]. Therefore,
observing and understanding driver behavior has attracted much attention from
researchers. Many studies have been made to determine what factors are associ-
ated with critical events that occur before crashes. In the context of naturalistic
riding study (NRS), a huge amount of data is collected which provides useful
information concerning the rider’s behavior, i.e., how the rider interacts with
the vehicle and other road users.

The machine learning techniques are used widely to determine driving styles
characterization [2]. So far, applications of deep learning approaches to Rider
behavior data analysis are limited compared to Driver data analysis. Recently,
in [3], the authors give an overview of the use of the Deep Learning algorithms
to learn driving style from trajectory data.

Inspired by our recent work [4], in this article we adopt a two-step method-
ology for identification of riding patterns and we experiment several recurrent
neural network architectures and methods. In order to understand the decision
made by the models, we propose to analyze the latent representation obtained

1https://www.onisr.securite-routiere.gouv.fr/
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by an autoencoder. Furthermore, the Local Interpretable Model-agnostic Ex-
planations (LIME) [5] is used to provide a global understanding of the model
through an individual prediction. Finally, a visualization tool is proposed to
better understand the features impact when analyzing time series data.

2 Data

The data analyzed in this study is issued from a natural riding study comprising
11 riders. Each rider performs a different number of riding experience (3 in av-
erage). The motorbikes are equipped with two types of sensors (a gyroscope and
an accelerometer) which capture the information concerning the riding dynam-
ics (with 10 Hz frequency), e.g., accelerations alongside different axis and also
lateral and longitudinal movements (see Figure 1). An extract of the features
for one of the rider is also shown in this figure.

The annotations for each temporal point in this dataset are provided. It
comprises an ensemble of 26,310 points with 65% of straight segments, 6% of
left turns points, 16% of right turns points and 11% of roundabouts points. Each

temporal point x(t) ∈ R6 is described by x(t) = {A(t)
x , A

(t)
y , A

(t)
z , R

(t)
x , R

(t)
y , R

(t)
z }.

As it can be noticed, we encounter the imbalanced data challenge, with straight
segment and left turn patterns as majority and minority classes respectively.

Fig. 1: 3D gyroscope features in left and their values extracted over 50 seconds

Descriptive analysis. In order to study the riding situations in greater detail,
the joint distributions of two features, namely the lateral acceleration (Ay) and
yaw axis (Rz), are traced for riding patterns (see Figure 2). These joint distri-
bution highlight clearly the difference between the four riding situations. The
left and right turns display opposite behaviors while the roundabout patterns is
a fusion of both (more similar distribution to that of left turns).

(a) Left turn (b) Roundabout (c) Right turn (d) Straight line

Fig. 2: Joint distribution of 4 riding situations with respect Ay and Rz
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3 Methodology

In order to classify the four previously mentioned riding patterns, we have
adopted a two-step approach. First, the temporal points are segmented through
an overlapped window. The reason behind this segmentation step is that the rid-
ing situations takes at least few seconds over time to be performed. As the result
from this step, we obtain a set of T overlapped segments S = {S1, S2, . . . , ST }
where St = {x(t), . . . ,x(t+w)} with the window length w = 50 (5 seconds).

The resulted segments S are then used as the input of a classification module
f as follows:

ŷ = f(S, θ); with ŷ ∈


SL Straight Line

LT Left Turn

RT Right Turn

RA Roundabout

, (1)

where θ is the model parameters to be estimated. As the riding patterns are
issued from the successive patterns observed over time, the temporal dependency
between the points inside each segment should be taken into account for a better
identification of such patterns. Two recurrent neural network architectures are
considered for the function f , which are briefly explained in the following:

• Long shot-term memory network (LSTM) : A recurrent neural network
architecture with three gates which allows the information persistence over
time through a cell state;

• Gated Recurrent Unit (GRU) : A simpler recurrent neural network archi-
tecture than LSTM including two gates and without the memory cell. As
result, it requires less parameters to be estimated and is more adapted for
small datasets.

To explain the decision made by these models, a Deep Temporal Autoencoder
(DTA) is used to visualize the learned latent representations. This is inspired by
[6] which is used basically for unsupervised temporal data clustering. The DTA’s
scheme is shown in Figure 3. The latent temporal representation of segments
is learned in unsupervised fashion using an autoencoder consisting of recurrent
layers (LSTM). It should be noted that this approach may also be used directly
for classification purpose. In this article, it is used to demonstrate the underlying
representation.

Fig. 3: Deep Temporal Autoencoder (DTA) and its embeddings
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4 Results

In the following, we present the experimental setup based on which the results
are obtained. Finally, we try to explain the models through an example and
using different tools.

Experimental setup. The experimentation is done using leave-one-out se-
quence cross validation approach. Alongside the methods based on neural net-
works, we have also evaluated the Gradient Boosting (GB) approach. To fine-
tune the hyper parameters of each of the previously mentioned methods, we have
used a gird search over a set of parameters. For more information, the readers
may refer to [4]. Various evaluation criteria are also used to compare between
the approaches which are F-measure, Cohen’s kappa and accuracy expressed
alongside its standard deviation over several runs of experiments.

Riding patterns embeddings and classification. In order to show the dif-
ficulty of the riding patterns classification, the latent representation obtained
using DTA is shown in Figure 3. As it can be seen, the frontier between some
patterns is ambiguous, e.g., the LT pattern’s embeddings are very close to those
of the SL and RA patterns. The finding that could be also expected from the
analysis in section 2. This phenomena could be explained by the fact that each
riding pattern is constituted of multiple segments (for example a roundabout
involves different manoeuvres such as right turn, straight segment and left turn)
where each segment is represented by a set of points over time and could be sim-
ilar between patterns. In the following section, one of these ambiguous patterns
is used to explain the model decision.

The performances of three previously mentioned methods are also compared
using various criteria in Table 1 with best performances highlighted in bold. It
can be observed that recurrent neural networks work better than GB which does
not consider the temporal nature of riding patterns. The performance of LSTM
and GRU remains very close with a relatively smaller number of parameters
for GRU (implying less computation time). It should also be noted that the
performances are lower for LT patterns (minority class) which are very close to
SL and RA patterns in the latent space (see Figure 3).

Table 1: Comparison of the performances for the riding patterns classification task

F-measure per class
F-measure κc

Accuracy
#parameters

SL LT RT RA (R)± (std)
GB 92.2 56.3 80.7 73.8 86.2 0.74 88.6 ± 2.9 100 estimators

LSTM 94.9 67.8 87.5 86.3 89.4 0.83 93.1 ± 3.1 123,604
GRU 94.8 65.9 88.6 85.6 91.5 0.83 91.5 ± .03 93,404

The predictions of the LSTM model are also compared visually with the
ground truth labels for one of the sequences (see Figure 4). The third graphic in
this figure shows the Softmax layer probabilities used to highlight the ambiguous
cases. Most of the situations are correctly identified. A period of ambiguous
decisions are highlighted by a dashed rectangle, which concerns a roundabout
situation. The RA situations are particularly challenging as they are constituted
of multiple manoeuvres similar to other patterns.
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Fig. 4: A riding sequence alongside the predictions and probabilities obtained using LSTM

Model and predictions explanation. This section provides explanations
concerning the RA situation highlighted in Figure 4 using the LIME method
[5]. More precisely, the first wrongly identified left pattern is considered for
the sake of this analysis, and we call it test segment in the following. The
corresponding features for this test segment and prediction probabilities are
shown in the bottom part of the Figure 5. In order to better understand the
decision made by the LSTM model, the mean behaviors of different features for
each riding pattern are also shown in the top part of this figure. The confusion
concerning this segment can be observed through the assigned probabilities.

Fig. 5: Averaged features for each riding pattern in the top part. A test segment (187th
segment inside the dashed rectangle in Figure 4) which is a RA segment and is misidentified
as LT by the model and for which we search for an explanation

The local explanations obtained using LIME for the test segment are shown in
Figure 6. The categorized features are shown on y-axis of these figures, indicating
a relation at a fixed point in time. As an example, ‘Rz t-16 > 0.27’ indicates
that the feature Rz at time stamp 16 (10−1 second) with a value greater than
0.27 contributed as the length of the corresponding red (negative contribution)
or green bar (positive contribution).

Fig. 6: Local explanation using Lime for the test segment depicted in Figure 5

It can be observed that the Rz feature which is highly related to handlebar
position, shows a high contribution at time point 16 for the LT pattern. This
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can be confirmed by the increasing behavior of this feature at time stamp 16
for the test segment and its similarity with the averaged Rz for LT pattern (see
green encircled areas in Figure 5). On the other hand, the various instants of
Ry feature are contributed to identifying the test segment as RA and SL.

Although the LIME method gives some local insights about the decision of
the model, it becomes cumbersome to trace the impact of features for long time
series. For this reason, we propose a new visualization tool based on the values
of hidden units and model weights for each feature over time which are shown
in second and third graphics of Figure 7. The global relation between features
and riding patterns could be observed (e.g., Rz feature with RT and SL).
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Fig. 7: Proposed visualization tool for explanation of time series data

5 Conclusion and perspectives

In this article, a two-step methodology for the classification of riding patterns
from time series data is proposed. The recurrent neural network based methods
have shown good performances for this task. Furthermore, the model’s decision
is explained locally and at a global level. In order to overcome the imbalanced
class challenge encountered in this work, as an insight for future works, we
investigate the use of generative methods as GAN and VAE.
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