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Abstract. State-of-the-art Computer Vision models achieve impressive
performance but with an increasing complexity. Great advances have been
made towards automatic model design, but accounting for model perfor-
mance and low complexity is still an open challenge. In this study, we
propose a neural architecture search strategy for high performance low
complexity classification models, that combines an efficient search algo-
rithm with mechanisms for reducing complexity. We tested our proposal
on a real World remote sensing problem, the Local Climate Zone clas-
sification. The results show that our proposal achieves state-of-the-art
performance, while being at least 91.8% more compact in terms of size
and FLOPs.

1 Introduction

Modern data-driven approaches to deal with large-scale data, particularly Deep
Learning (DL), require domain and data science expertise. The variety of ap-
plication tasks (e.g., classification and object detection) often require designing
models that are not necessarily reusable in other tasks [1]. Moreover, manu-
ally designing models is time consuming and error prone. Thus, automating the
Machine Learning (ML) pipeline design (a.k.a. AutoML [2]) is much desirable.

Neural Architecture Search (NAS) [3], a sub-field of AutoML focusing on the
design of ML models, has already proven to be successful for a wide variety of
problems, including Computer Vision (CV) [3].

In Earth observation (EO), satellite remote sensing enables recovering contact-
free large-scale information about the physical properties of the Earth from
space. Thanks to ESA’s Sentinel missions and NewSpace companies, petabytes
of satellite data has become available, leveraging large-scale datasets that have
boosted the study of tailored models, in particular for multi-spectral and Syn-
thetic Aperture Radar (SAR) data classification [4]. However, the application
of NAS for further improvements remains quite unexplored.

In this paper, we propose a NAS strategy to automatically design high-
performance low complexity image classification models. Particularly, we com-
bine a differentiable search strategy to optimize the elementary normal cells of
a backbone architecture, with a structural depth and a complexity reducing loss.
We validate our proposal on a real world problem, the So2Sat LCZ42 [5] data
set for classification of Local Climate Zones (LCZ). Our results show that the
best found models are on par with state-of-the-art baselines, while accounting
for at least 91.8% less FLOPs and size.
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2 Related Work

The increase in remote sensing missions and sensors has allowed more data
collection, which in turn has motivated the creation of larger EO datasets for
scientific purposes [6]. In order to analyse these large data sets, the remote
sensing community has embraced the use of DL models classically used in CV
for similar tasks [4]. However, due to the particularities of these EO data sets
(e.g., multi-modal, geo-located, time-variable data), it is necessary to develop
domain-specific models [7]. Therefore, AutoML (and particularly NAS), has the
potential to ease and improve the quality of the future tailored models.

Great advances have been made in the NAS field [3, 8]. However, most
approaches have not yet been adopted because they require a lot of computa-
tional resources and time [3, 8]. To cope with these limitations, some authors
have leveraged the differentiable architecture search (DARTS) [9], dramatically
reducing the search budget time (GDAS [10]), without compromising the per-
formance. On the other hand, some authors have explore NAS for low com-
plexity models, including the design of models for constrained hardware [11, 12],
compression-based approaches [13], and pruning techniques [14], among others.

3 NAS for Compactness

A Differentiable Search Strategy: Let α = {αcell,∆} be a candidate neural
architecture defined by an elementary module αcell, a backbone configuration ∆,
and ωcell and Ωdepth the respective weights. The objective is to find α∗ that
minimizes a validation loss, while identifying its optimal parameters ωcell∗ in
training:

min(αcell,∆)E(x′ ,y′ )∼DV
L(x

′
, y

′
) s.t. ω∗cell = argminωE(x,y)∼DT

L(x, y) (1)

The optimized loss L is the sum of a prediction loss LNLL and a weighted
complexity reducing loss Lcpl: L(x, y) = LNLL(x, y) +Ccpl ·Lcpl. Here LNLL is
the negative log likelihood of predicting the correct label y, given a data sample
x, αcell, ∆ and ωcell ∈ W. Both αcell, ∆ are respectively sampled from τA
and τ∆ the probability distributions over the cells and depths configurations. In
practice, τA and τ∆ are encoded by the matrices Acell, and Ωdepth. Thus, the
distribution over α is A = {Acell} ∪ {Ωdepth}. To sample, we use a continuous
and smooth Gumbel-Softmax function (i.e., the sampling on α is differentiable),
thus we can learn τA via Gradient Descent. To tackle our Equation 1, we propose
to use Algorithm 1 alternating between updating the trainable parameters of an
architecture, sampled in W, and its structural parameters sampled in A [10] .
Cells and Depth Search Space: All considered model α use the backbone
architecture introduced in Figure 1 [10]. As in [13], each block i of α is made of a
sequence of identical cells αcell, of variable length δi.Therefore, α is parametrized
by ∆ = [δ1, δ2, ..., δN ], s.t. δi < δmax, the set of depths for all block i. As
in [10], we search for the topology of αcell. Such module is defined as a directed
acyclic graph G, with an ordered sequence of B features (nodes). Each node is
the resulting transformation of its T = 2 preceding nodes as: Ii = fi,j(Ij) +
fi,k(Ik) s.t. j < i & k < i where Ii, Ij, Ik represent nodes of respective indices
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i, j, k. fi,j , fi,k represent operations sampled from a set F. The final αcell
obtained by selecting the function fi,j between each pair of nodes i and j with
the highest probability to appear.
Complexity Reducing Loss: In order to reduce the complexity of a searched α,
we formulate a complexity loss to minimize [11, 13]: Lcpl =

∑
δk∈∆ Lcpl−cell · δk,

a function of the selected depth δk for all k blocks. At a cell-level, it writes as
Lcpl−cell = 1

Nops

∑
oi,j∈αcell

FLOPs(oi,j) · ωi,j , where Nops is the total number

of operations, and ωi,j the probability of selecting an operation oi,j in αcell. It
is made differentiable only with respect to the cells’ weights ωi,j .
Architecture Depth Search: We look for the optimal depth of each block
in α [13]. This aspect is capture by matrix: Ωdepth = [Ω1, ...,Ωi, ..,ΩN ], s.t. Ωi ∈
Rδmax where δmax is the maximal depth per block, and Ωi the depth parameters
for block i. These parameters are involved in the training process as follows:
fblocki+1 =

∑
Ωj

i∈Ωi
fblocki · Ω

j
i where fblocki is the feature map resulting from

block i. The final feature map is a sum of the original block’s feature map
weighted by the parameters Ωji of all potential depth j at layer i.

Algorithm 1: Searching for αcell and ∆

Input: Two disjoint sets DT and DV , randomly initialized A and W, batch size;
while not at convergence do

Sample a batch Dt = {(xi, yi)}ni=1 from DT

Calculate LT =
∑n

i=1 L(xi, yi)
Update W by gradient descent: W = W−∇WLT

Sample a batch Dv = {(xi, yi)}ni=1 from DV

Calculate LV =
∑n

i=1 L(xi, yi)
Update A by gradient descent: A = A−∇ALV

end
Derive the final architecture α = {αcell,∆} from A;
Optimize α = {αcell,∆} on the whole training set for future inference on the test set.
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Fig. 1: An architecture α, with a reduction cell is fixed according to [10].

4 Experimental Setup

Data: The So2Sat LCZ42 classification benchmark [5] consist of samples from
42 urban areas (plus 10 smaller areas for validation and test) across all conti-
nents. Including 400,673 co-registered Sentinel-1 SAR (8 real-valued bands) and
Sentinel-2 multi-spectral (10 real valued bands) image patches and its respective
labels. Each patch is a 32x32 pixel image (320x320 meters spatial resolution).
The data set defines 17 LCZ classes, ten urban classes and seven vegetation ones.
Data distribution: We consider two distributions using Sentinel-2 and the la-
bels, exclusively. In d1, the training-set consist of samples from 42 cities (352,366
patches). Validation (24,188 patches) and test (24,199 patches) contain samples
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from 10 different cities, respectively taken from east and west part of each city.
In d2, train and test sets are randomly draw from d1 training-set (80% and 20%
respectively). Thus, both have the same data distribution. At search time, the
train set is split into two halves: DT (training) and DV (validation).
Hyperparameters: We set the number of channels in the first layer 16, the
number of nodes in αcell to 4, the number of incoming cells to 2, and the initial
depth δ in all blocks to 3. The max depth per block is set as 5. We use SGD
(105 epochs) for training, and we set the learning rate to 0.025, weight decay to
3e−4, annealed to 1e−3, and momentum of 0.9. The Gumbel-Softmax sampler
temperature is set to 10 (linearly reduced to 1). Also, we set Ccpl = 0.01, to
enable balancing the optimization of both LNLL and Lcpl. We observed that
larger values tend prevent the convergence of the overall objective L. Addition-
ally, following [10], we set F as: the (1) identity, (2) zeroize, (3) 3x3 depth-wise
separate convolutions, (4) 3x3 dilated depth-wise separate convolutions, (5) 5x5
depth-wise separate convolutions, (6) 5x5 dilated depth-wise separate convolu-
tions, (7) 3x3 average pooling, (8) 3x3 max pooling. The stride is set to 1 for
normal cells, and to 2 for reduction cells.
Implementation: We used GDAS [10] and TAS [14] source code as basis, and
ResNet08, ResNet32 and ResNet110 models (available on the same repository)
as baselines. The experiment were run on a Nvidia V100 GPU.

5 Results

Performance in d1: Table 1 presents the mean performance on test data (4
independent runs). S stands for Single Cell Search, C for Complexity Loss,
D for Depth Search, and ’+’ indicates the combination of these settings. The
individual effect of Depth Search (S + D) and the Complexity Aware Loss (S
+ C) is positive in improving performance on both OA, AA, and Kappa metrics
over Single Cell Search (S). The combination (S + C + D) does not accumulate
their benefice. The model (S + D) brings the most improvements while keeping
the complexity low over, compared to (S). When compared to manually designed
baselines (Table 1 - left), (S + D) is a TOP-2 low complexity model (FLOPs
and Size), a TOP-2 performer for two accuracy metrics (OA and Kappa), while
best on the AA metric. The best selected model (S + D) outperforms manually
designed baselines of similar complexity. Also, all selected models are performing
well in test on d1 while being selecting on data distribution d2.

Method ResNet08 ResNet32 ResNet110 S S+C S+D S+C+D
OA 60.25 64.85 67.60 64.05 64.25 64.96 64.00
AA 47.86 52.24 53.34 50.39 51.63 54.02 52.20
Kappa 0.565 0.615 0.645 0.61 0.61 0.62 0.61

Size (MB) 0.08 0.27 1.73 0.224 0.165 0.14 0.130
FLOPs (M) 13.53 41.85 253.89 30.37 24.10 20.05 18.42
Block’s Depth NA NA NA 3x3 3x3 1x3 1x3

Table 1: Mean performance benchmark in test for setting d1.

Performance in d2: Table 2 presents the mean performance for 4 inde-
pendent runs on d2. The individual effect of Depth Search (S + D) and the
Complexity Aware Loss (S + C) are non beneficial over Single Cell Search (S)
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in test. Combining with (S + C + D) does not improve performances neither.
However, overall performance of all models are very good, suggesting that the
d2 data distribution is much easier to fit than d1. The best model found using
the proposed approach is (S + D), with 98% OA, 91.44% AA and 0.98 Kappa.

Method ResNet08 ResNet32 ResNet110 S S+C S+D S+C+D
OA 96.18 96.89 98.59 98.15 97.81 98.00 97.74
AA 88.91 89.75 91.91 91.61 91.12 91.44 91.08
Kappa 0.958 0.966 0.984 0.980 0.975 0.980 0.975
Size (MB) 0.08 0.27 1.73 0.224 0.165 0.14 0.130
FLOPs (M) 13.53 41.85 253.89 30.37 24.10 20.05 18.42
Block’s Depth NA NA NA 3x3 3x3 1x3 1x3

Table 2: Mean performance benchmark in test for setting d2.

Compared to modern classification baselines (Table 2 - ResNets), the model
(S + D) is TOP-2 in performance and is very close (0.59% - OA, 0.47% - AA and
0.004 - Kappa) to ResNet110 (TOP-1), while it is nearly 92% smaller (FLOPs
and Size) than ResNet110. Also, it outperforms similar complexity competitors.

Confusion: Figure 2 depicts the confusion matrix of (S + D) on d1 (left)
and d2 (right). The confidence increases from blue to yellow. In both cases, the
confusion is higher for urban classes (1 to 10). This resemblance suggests that
the 42 cities selected on d1 and the 10 introduced on d2 are similar. Also, the
confusion for the vegetation classes (11 to 17) is lower on d2 than on d1. This
difference could be explained by the vegetation disparity around the globe.

Fig. 2: Confusion matrix for model (S + D) on test d1 (left) and d2 (right).

6 Conclusions and Future Work

In this paper, we proposed a differentiable search strategy combined with two
mechanisms to reduce the model complexity for finding high performing and
low complexity classification models. We tested our proposal on a real World
problem, the So2Sat LCZ42, using two different data distributions (d1 and d2).
In test, our approach achieves state-of-the-art performance (ResNet-110), while
being 91.8% smaller in both FLOPS and size, and outperforms all baselines of
similar complexity (ResNet-08). However, in test, these cumulative improve-
ments are not consistent, in particular on the data distribution d2. As future
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work, we propose to investigate how to improve model selection in validation to
get the most of fully retrained models in test.
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