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Abstract. Personal trajectory data are becoming more and more ac-
cessible and have a high value in transport planning and mobility charac-
terisation, at the cost of a risk for user’s privacy. Addressing this risk is
usually computationally expensive and can lead to losing most of the data
utility. We explore a new, light-weight approach to Origin/Destination-
matrix anonymization that is easily scalable. We apply it to trip records
from New York City Taxi and Limousine Commission (TLC) to illustrate
how it can combine foolproof anonymity with a good spatial precision for
a reasonable computational cost.

1 Introduction

Personal trajectory data are a category of personal data consisting in sequences
of spatiotemporal points that represent the trajectory of users over a given time
span. It is clear that a dataset of trajectories must be completely anonymized
in order to protect user’s privacy. Data protection approaches rely mostly on
k-anonymization, which is achieved when all users in the data are indistinguish-
able from at least £k — 1 other users. k-anonymization is usually attained through
generalization and suppression [1, 2], i.e., replacing values with less specific but
semantically consistent values shared with other users, and deleting outlier users,
respectively. However, k-anonymization of whole trajectories proves to be diffi-
cult to achieve for k > 5 and struggle to offer a truly foolproof anonymization
[3]. In this paper, we consider trajectories defined only by their first and last
spatiotemporal points, i.e., an Origin/Destination (OD)-matrix. Although they
leave out most of the trajectory information, OD-matrices are a key element
in the transport analysis framework as they can be used to understand the
dynamic of transport demand [4], make long-term prediction [5] and allow for
transport simulations [6]. Anonymization of OD-matrices has been explored in
[7] with a uniform aggregation to achieve k-anonymization, and in [8, 9] with
a tree-based spatial aggregation to achieve differential privacy. Differential pri-
vacy is arguably a more elaborate and rigorous anonymization framework than
k-anonymization, but we will not consider it as our goal for the following reasons
: 1) as of today, differential privacy is not recognized by European regulators,
who promote k-anonymizaton instead, i) In our case differential privacy in-
troduces a noise in the data that is acceptable only for high enough volumes,
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which means the data is already k-anonymized. In this paper, we use a quadtree
to achieve k-anonymization of an OD-matrix with 6 < k < 16. Further sim-
plifying the problem, we treat the aggregations of origins and destinations as
two separate problems. The aggregation of origins gives a first spatial partition
for origin areas, each origin being associated to a second spatial partition for
destination areas. For each origin, finding the spatial partition for destinations
that minimizes a generalisation error [2] reduces the anonymization problem
to a tree-knapsack optimisation problem (TKP), or ordered knapsack problem
[10]. Resulting volumes v,q from an origin o to a destination d are considered
anonymized if v,q > k and are suppressed if v,q < k. These simplifications let us
find the least destructive anonymization as measured by the generalisation error
for high values of k. The rest of this paper is organized as follows: in Section
2, we formalize the problem and propose an algorithm to solve it. In Section
3, we apply our approach to an extract of New York City Taxi and Limousine
Commission (TLC) trip records and evaluate the quality of the resulting data.

2 Anonymization methodology

2.1 Problem setting

We consider a region partitioned in a uniform grid U containing |[U| = N x N
initial tiles. Let 6 < k < 16 be our anonymity threshold. We perform spatial
aggregation based on a quadtree, i.e., a tree-like data structure where each non-
leaf node n represents an area and children of n represent the four quadrants
in which the area can be divided. A leaf node has 0 children and represent a
unit of spatial information. Thus n has either 0 or 4 children. We consider Q
the set of quadtrees whose root represents the complete study area and whose
vertices correspond to a non-empty set of tiles in U. Note that in order to have
Q # (), N must be a power of 2 without loss of generality. In the remainder
of this paper, for all ¢ € Q we note L(q) the set of the leaves of ¢ and for all
node n € ¢ we note |n| the number of tiles in U represented by n. For each
q € Q, L(q) is a spatial partition of the study area. We note ¢V the quadtree
q € Q such that £(q) = U. Each q € Q is a subtree of ¢V, and ¢V has exactly
14+4+416+...+|U| = 5(4|U|—1) vertices. We apply generalization on origins and
destinations separately. Origin aggregation aims at finding a spatial partition
L(q°"%) = {o1,...,0;,...} for which the outgoing volumes v, are the closest to a
target volume v¢qrge:. Formally, ¢°"* represents the solution to the optimization
problem, defined in Eq. 1:

¢°" = arg miél Z (Vo — Vtarget)? (1)

For each origin o € £(g°""), destination aggregation aims at finding a spa-
tial partition £(q2**) = {dy,...,d;,...} that minimizes the generalization error
defined in Eq. 2. This error, defined for a couple (o, d), corresponds to the indi-
vidual information loss [2], which independently penalize generalization of each
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attribute. For OD trips, we only have two attributes namely their origin and
destination and we may measure by |o| and |d| their spatial generalizations in
number of tiles. This leads to the following loss function:

d| -
Uod‘o‘Jrl l if vog > k

U\U
I if’l)od<]€.

(2)

|
Ul+
i

G(o,d) = {

Volumes v,q < k must be suppressed, and are therefore counted as if they were
aggregated at the highest level, leading to the maximal cost of 1 per attribute.
The associated optimization problem is defined by:

dest __ .
¢ = argmin } | G(o,d). (3)
deL(q)

Treating suppressed volumes as aggregated to the highest level leads to a
disproportionate penalty and to solutions that have close to no suppression at
all, resulting in coarse generalization. Trajectory data are known to consistently
contain some hard-to-generalize outliers [1]. In order to allow suppression of
those outliers, we set a suppression threshold .S interpreted as a maximal number
of suppressed trips allowed, and we apply a coefficient 0 < § < 1 to the cost of
suppression. Generalization error for a trip becomes Gs(o, d) defined as:

G(o,d) if vog > k

4
0G(0,d) if voq < k, @

Gs(o,d) = {
and the corresponding optimization problem becomes:

g5 = argmin > Gs(o,d),
deL(q)

s.t. Z Voqg < S. (5)

deL(q):
Voa <k

2.2 Problem solution

All objective functions considered above are modular, meaning that for any par-
tition £(g) of U, the objective function can be expressed as } ¢ r(,) 9(a), where
9(a)aer(q) are partial costs that are independent of each other. In the absence
of constraints as in Eq. 1 and Eq. 3, modularity makes it easy to recursively
compute for any node n € ¢V the smallest partial cost achievable g*(n): if n
has no children, then g*(n) = g(n), else g*(n) = min(g(n),zcechildren(n) g(0)).
With this naive method, we solve Eq. 1 after visiting each node of ¢V once,
i.e., in exactly %(4|U| — 1) steps. Applied to the problem defined in Eq. 5 for
each o € L£(g°""), this approach returns a solution §2** which is not guaranteed
to respect the constraint. However, Eq. 5 can be recast as a type of knapsack
problem. In this case, each node n of g2 is considered as an item with weight

w being the volume that will get suppressed if n is split, and benefit b being the
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gain in generalization error induced by splitting n. The maximum capacity for
the knapsack problem is then the suppression threshold S. Then, selecting which
areas to split amounts to a knapsack problem with the following variants: i) the
weight w may be zero if splitting n does not lead to suppressing additional vol-
umes; #1) the benefit b may be negative if splitting causes too much suppression;
i11) items follow a dependency tree: we can only split an area if its parent have
been split. This problem has already been explored under the name of ordered
knapsack problem in [10]. As our problem is small enough (an initial grid of
|U| =128 x 128 gives 3(4|U| — 1) = 21845 items for the knapsack problem), we
can find the exact solution with a dynamic programming approach.

2.3 Reporting of small volumes

Suppressing trips alters the total volume of the data, which alters its represen-
tativity. To keep as much information as possible, we add a post processing
step for each origin o to aggregate all destinations d s.t. v,q < k as a single
destination D,. This step is not integrated into the optimization problem as the
resulting cost function would not be modular (reported volumes impact several
areas of the destinations partition). Reporting volumes allows us to reach nearly
100% k-anonymization, with edge cases when v,p, < k. Such flows that fail to
be anonymized by this post-processing step are suppressed.

2.4 Algorithm Complexity

Dynamic tree knapsack solving involves recursively merging dynamic solutions of
all children of each node. As each dynamic solution has a maximum size of .S and
merging two solutions s1, so requires going through s; X sy iterations, merging
all four children of each node has a complexity Tr,erge = O(S*). As a quadtree
contains (4|U|—1) = O(|U|) nodes, the overall complexity of knapsack solving
is Trp = O(|U|S*). However, dynamic knapsack solutions are in practice never
of size S as only few configurations are relevant. The empirical complexity is in
fact constant with respect to the suppression threshold S (Fig.1).

3 Results and discussion

We applied our approach to a subset of TLC Trip Records data' between 12t"
January, 2009 and 31%% April, 2009 containing 41 712 990 OD rows for a total of
77 696 280 trips, separated into 2 616 OD-matrices each matrix corresponding
to a one-hour time span. Our initial grid U was set with a mesh my = 200 m
for a study area of 12800 x 12800 m?, which corresponds to |U| = 642 = 4096
tiles. Data aggregated to U presents only 9% of 6-anonymity overall. We solved
for k € {6,11,16} with § = 0.01 and S = 10% of total volume for each matrix.
For each k, viqrget is manually set based on performance obtained over one
week of data. High values for vierget yield large origin aggregations and small

Ipublicly available at: https://www1l.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Fig. 1: Total computation time w.r.t. number of tiles in the initial uniform grid
|U| (left) and suppression threshold S (right) for one month of data

destinations, while low values yield small origins and large destinations. We
choose Vigrget 50 as to minimize the difference between the mean size of origins
and destinations. Solving for all matrices took approximately 16 hours on a
personal computer with a 2,9 GHz Intel Core i5 and 8Go RAM. We measure
the precision of the aggregated data with the Mean Area of Origins (MAO)

and Mean Area of Destinations (MAD) : MAO = Z“‘%W’ and MAD =

od Vod
> pa VoaX|dImE

S ed MAO and MAD represent the spatial precision of the aggregated

data in m? and are tied to the total generalization error G510t With :

Zod Yod

Ga,tot = ZG(S(O, d) = (T

o,d

) % (MAO + MAD) + 6% Y voa.  (6)
o,d
We compare our solution to a naive approach using a uniform r]'si)kratiad aggre-
gation of 4 x 4, 8 x 8 and 16 x 16 initial tiles. MAD for those naive approaches
are far greater than their spatial aggregation, as the post-processing step of re-
porting suppressed trips for each origin brings together several destinations as a
single large destination area. Results of information loss are shown in Table 1.

4 Conclusion

We introduce a lightweight solution for general-purpose OD-matrix aggrega-
tion that loses minimal information. The proposed approach relies on assuming
quadtree structure, summarizing whole trips to ODs and performing uniform
temporal aggregation. We argue that such heavy hypotheses are relevant in
many applications such as traffic simulation, mobility patterns analyses, or dy-
namic of transport demand. Solving the problem separately for spatial partitions
of origins and destinations introduces a hyperparameter v;q,ge: that requires fine-
tuning, but allows us to rapidly process huge volumes of data. This approach is
especially suitable for anonymizing mobile phone operator data that are charac-
terized by huge volumes and high sensitivity.
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k approach MAO (km2) MAD (km?) Gs tot % k-anon
6 our approach, viarget = 400 1.71 1.67 1.7e+06  99.97%
6 naive 4*4 agg, reported 0.64 3.60 2e+06 99.61%
6 naive 8*%8 agg, reported 2.56 3.41 2.8e+06  99.90%
6 naive 16*16 agg, reported 10.24 10.35 9.8e+06  99.94%
11 our approach, vtarget = 700 2.93 2.86 2.7e4+06  99.93%
11  naive 4*4 agg, reported 0.64 7.83 4e+4-06 99.23%
11  naive 8*8 agg, reported 2.56 4.81 3.5e+06  99.78%
11  naive 16*16 agg, reported 10.24 10.60 9.9e+06  99.91%
16  our approach, viarger = 1000  3.77 3.56 3.5e+06  99.90%
16  naive 4*4 agg, reported 0.64 11.69 5.8e+06  98.86%
16  naive 8*8 agg, reported 2.56 6.22 4.2e+06  99.67%
16  naive 16*16 agg, reported 10.24 10.89 le+07 99.88%

Table 1: Performances of k-anonymization with our approach compared to naive
tile aggregation, for various k
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