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Abstract. The ability of Graphical Processor Units (GPUs) to quickly train data-
and compute-intensive deep networks has led to rapid advancements across diverse
domains such as robotics, medical imaging and autonomous driving. However,
memory constraints with GPU-based training for memory-intensive deep networks
have forced researchers to adopt various workarounds: 1) resize the input image,
2) divide input image into smaller patches, or use smaller batch-sizes in order to fit
both the model and batch training data into GPU memory.While these alternatives
perform well when dealing with natural images, they suffer from 1) loss of high-
resolution information, 2) loss of global context and 3) sub-optimal batch sizes.
Such issues will likely to become more pressing for domains like medical imag-
ing, where data is scarce and images are often of very high resolution with subtle
features. Therefore, in this paper, we demonstrate that training can be made more
data-efficient by using a distributed training setup with high-resolution images and
larger effective batch sizes, with batches being distributed across multiple nodes.
The distributed GPU training framework, which partitions the data and only shares
model parameters across different GPUs, gets around the memory constraints of
single GPU training. We conduct a study in which experiments are performed for
different image resolutions (ranging from 112×112 to 1024×1024) and different
number of images per class to determine the effect of image resolutions on network
performance. We illustrate our findings on two medical imaging datasets namely,
SD-198 skin-lesion and NIH Chest X-rays.

1 Introduction and Motivation

The recent breakthroughs in deep learning have made it possible to create automated
practical solutions to challenging medical diagnosis problems [1], [2]. Deep neural
networks require a large amount of annotated data for training to avoid over-fitting,
which is often a concern in medical imaging datasets where few annotated images but
of high-resolution are available. However, limited GPU-compute forces us to work
with low-resolution images hence, high-resolution images are down-sampled for train-
ing purposes [3]. This compromises the network performance as size reduction incurs a
significant loss of crucial information. Furthermore, the batch size has to be reduced for
high resolution images to fit the deep model and batch training data into GPU memory.
Thus, there is a trade-off as higher batch size allows better gradients to be computed
with regard to the loss function [4]. In addition, sharing of sensitive patient data com-
ing from different sources is a key concern, and a deterrent for training deep learning
models that require large amounts of training data. Therefore, to enable training with
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large effective batch sizes and avoid sharing of sensitive patient data, we resort to dis-
tributed training of high-resolution images in the medical domain.

In this paper, we intend to address fundamental challenges of low-data, high reso-
lution images and optimal effective batch-size distributed across worker nodes, in the
training of deep neural networks on medical imaging data for automated diagnosis. We
conduct experiments to probe the following: 1) Can fewer high-resolution images be
used to train, rather than a large number of low-resolution images, and yet achieve
comparable / better accuracy? 2) What are the advantages of training high-resolution
images in a distributed GPU setup? 3) Can we select an optimal image resolution for
training a deep network which provides us with a better network performance for a
medical diagnosis task?

With the above motivation, we conduct experiments on two publicly available med-
ical imaging datasets: SD-198 skin lesion [5]; and NIH Chest X-rays [6]; to study the
impact of different image resolutions (from 112 × 112 to 1024 × 1024), and varying
number of images per class, on deep network performance in two settings: single and
distributed GPU training setup.

2 Related Work

High-resolution images are desirable [7], [8] as they yield better network performance
and provide valuable insights into identifying a particular diseases. There have been
few attempts earlier to alleviate batch size problem in such scenarios. Haruki et al. [9]
uses data-swapping to enlarge the effective GPU memory for training a 3D medical im-
age segmentation network, without breaking an image into small patches. In [3], the
authors implemented spatial partitioning in a Mesh-TensorFlow framework. The study
in [7] concludes that increasing image resolution for CNN training often has a trade-off
with the maximum possible batch size, but this is amenable to optimization for maxi-
mization of neural network performance. In essence, earlier works have mostly focused
on devising ways to train deep networks on high-resolution images with effective GPU
utilization. In our paper, we are conducting a study to find the effect of different image
resolutions on network performance and determining if high resolution images in the
medical domain are more beneficial for the diagnosis.

We resort to distributed training of high-resolution images in the medical domain to
handle larger effective batch sizes. While distributed GPU training has shown impres-
sive improvements in [10], there exists limited body of work on distributed training
of deep networks in healthcare [11]. In [12], authors introduced a scalable intuitive
deep learning toolkit called R2D2 for medical image segmentation by offering novel
distributed versions of two well-known and widely used CNN segmentation architec-
tures. [13] described a system that leverages Virtual Imaging Platform (VIP) and Dis-
tributed Infrastructure with Remote Agent Control (DIRAC) enabling researchers to
use distributed computing resources with GPUs for their specific medical imaging ap-
plications. We use the open-source distributed training platform called Horovod [14] to
conduct experiments in a distributed-GPU setup that allows for a larger effective batch
size of images, and varying learning rates.
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Fig. 1: Distributed GPU training of high resolution medical images using Horovod [14].

Table 1: Summary of our experiments performed on two datasets.

Dataset No. if classes Image Sizes CNN Arch Training Images per Class

SD-198 [5] 10
112× 112, 224× 224, 448× 448,
512× 512, 600× 600, 800× 800,

1024× 1024
VGG16, ResNet50 10, 20, 30

NIH [6] 4 224× 224, 448× 448, 512× 512,
1024× 1024

DenseNet-169 200, 400, 600

3 Distributed Training Paradigm
We propose a data-efficient solution for training medical imaging data in a distributed
setup. As shown in Figure 1, data is distributed across multiple nodes, each having a
copy of model. Every node independently loads data in batches and trains a model and
determines gradients for each batch. Thus, each node looks at only a subset of data at
any given point during training and subsequently all the gradients across all the nodes
are averaged. Various approaches (e.g. all-reduce[14]) can be employed to gather and
average the gradients. The model is updated using the gradients and each node then has
a copy of the newly updated model. As each node trains on a subset of the data, only
model parameters are shared across nodes. Hence, no sensitive patient data is shared
between nodes, especially important in the medical imaging domain.We showcase the
efficacy of our approach with image datasets of skin lesions and chest X-rays.

4 Experimental Results and Discussions
Environment Setup: We conducted all experiments on an NVIDIA1 DGX-2 32 GB
(16xTesla V100) and NVIDIA A100 Tensor Core GPU running Ubuntu 18.04.4. The
training of deep models was carried out using Keras 2.4.0 with TensorFlow 2.3.1 as the
backend. A GPU-enabled tensorflow docker file from GitHub which includes Tensor-
Flow and CUDA/cuDNN dependencies was utilized. For the distributed training setup,
we used Horovod, an open source distributed training platform that has proven to be

1We thank NVIDIA for providing us access to V100 and A100 GPUs for carrying out our experiments.
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beneficial in distributed-GPU training [14]. The evaluation was mainly done on V100
or A100 GPUs using 2 or 4 workers.

Experiment Details: The details of our experiment setup are represented in Table 1.
In our experiments with the SD-198 dataset, we use 10 classes with maximum amount
of data i.e., 30 images each for training and testing. For experiments with the NIH
dataset, since chest X-ray images in the dataset are very complex and contain a lot of
variation in illumination as well as noise (e.g. pipes and other medical equipment), we
found heuristically that NIH dataset begins to learn discriminating features resulting in
adequate accuracy on using minimum of 200 images per class. Therefore, we choose
classes from NIH dataset such that each of them contains more than 1000 images per
class. Accordingly, we select 4 classes for our experiments. We create 3 different
training sets having 200, 400, 600 images per class from these 4 selected classes. We
utilize the entire test-set from these selected classes of NIH dataset.

Table 2: Pre-trained networks on SD-198 and NIH datasets.

Dataset: SD-198. Networks: Pre-trained VGG16 and ResNet50

Image Size #Images per class Serial Distributed

Num nodes Accuracy(%) Num nodes Learning rate Accuracy(%)
VGG‖Resnet VGG‖Resnet VGG‖Resnet VGG‖Resnet

3*112× 112 10 1 42.90‖48.63 4‖4 8.00e-5‖8.00e− 5 51.0‖51.0
30 1 62.47‖65.95 4‖4 8.00e-5‖4.00e− 5 66.8‖67.78

3*224× 224 10 1 47.12‖57.38 4‖4 4.00e-5‖4.00e− 5 45.0‖59.06
30 1 65.76‖77.64 4‖4 4.00e-5‖8.00e− 5 68.1‖78.52

3*448× 448 10 1 40.68‖63.42 4‖4 8.00e-5‖8.00e− 5 42.3‖65.43
30 1 59.40‖78.19 4‖4 4.00e-5‖4.00e− 5 69.1‖79.19

3*512× 512 10 1 43.39‖63.97 4‖4 4.00e-5‖4.00e− 5 46.6‖65.1
30 1 63.85‖79.90 4‖4 4.00e-5‖8.00e− 5 68.5‖81.87

3*1024× 1024 10 1 38.85‖59.40 4‖4 4.00e-5‖4.00e− 5 45.0‖56.71
30 1 60.13‖73.40 4‖4 4.00e-5‖8.00e− 5 66.4‖82.88

Dataset: NIH. Network: Densenet169

3*224× 224 200 1 57.73 2 8.00e-6 58.9
400 1 59.99 2 8.00e-6 61.2
600 1 62.78 4 1.60e-5 63.0

3*448× 448 200 1 59.67 2 1.60e-5 61.6
400 1 63.25 2 8.00e-6 63.66
600 1 63.61 8 1.60e-5 63.84

3*512× 512 200 1 62.66 3 1.60e-5 63.4
400 1 63.7 2 1.60e-5 64.79
600 1 66.56 6 6.4e-5 67

3*1024× 1024 200 1 59.40 4 8.00e-6 59.8
400 1 62.17 4 8.00e-6 63.3
600 1 66.74 4 8.00e-6 67.1

Results and Discussions: Now, we present results and insights obtained from our ex-
periments. In the serial setting, the deep network is trained on a single GPU, and hence
there is a limitation on the amount of image data that can be passed in a batch. We tried
various convolutional neural network (CNN) architectures, as shown in Table 1, and ob-
served that for the SD-198 dataset, the architectures that give the best performance are
VGG16 and ResNet50. DenseNet-169 performs better than other standard architectures
for the NIH Chest X-rays dataset. In the serial case, owing to GPU memory limitation,
we use a batch size of 5 for smaller image resolutions and 4 for 1024 image sizes. We
heuristically determine the best learning rate to be 1e− 5 for both the datasets.

The results of our experiments on both the datasets are shown in Table 2. We ob-
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Fig. 2: Graphs showing Image-resolutions vs accuracy for single vs distributed GPU-setup

serve that as the number of training images per class increases, the classification accu-
racy improves, which is expected since more data results in better generalization of the
network. Another interesting insight is that, with the increase in input image size, the
network performance improves initially, but begins to degrade once the image size goes
beyond a certain threshold (Refer Table 2, SD-198 VGG16 and NIH for image size 1024
and 512). Since the standard CNN architectures generally used for classification tasks
are designed with the default input size of 224× 224, their smaller-kernel architectures
are not suitable when the image sizes get extremely large (i.e. spatial neighbourhoods
become extremely fine-grained, so cannot be accommodated in the kernel).

Further, we observe that in a distributed scenario, every image size has a corre-
sponding ideal learning rate that attains the best network accuracy. This is reflected
in both datasets. Also distributing tasks across multiple GPUs enables a larger effec-
tive batch size which boosts the accuracy, as is evident in Table 2. We observe similar
findings in multiple experiments by varying image dimensions in both the datasets.

Another interesting observation is that for different image resolutions given the
model is kept constant, there is an optimal resolution at which the model will deliver
the best performance on the current task. Any resolution that is higher or lower, will
affect performance adversely (Refer Figure 2.) Besides, as the number of images-per-
class increases, the difference in the accuracy between serial and distributed training
becomes more significant (Table 2 SD198-ResNet50), with distributed training clearly
outperforming serial training of the model.

We demonstrate that distributed training usually attains a higher accuracy as com-
pared to serial training, with a few exceptions. The gradients are evaluated across mul-
tiple nodes in parallel as the effective batch size increases thus resulting in a higher
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accuracy. Thus, we believe that a distributed training setup is particularly beneficial in
the medical imaging domain, where most of the images are of a very high resolution
and a distributed training setup, facilitates training in parallel across multiple nodes.

5 Conclusions and Future Work

In this paper, we have demonstrated how training can be made more data-efficient by
using distributed GPU training on high resolution images. Most images in the medical
domain have high resolutions, rendering it infeasible to train with large effective batch
sizes, owing to memory constraints. This severely limits the accuracy of the trained
network. A distributed GPU-setup overcomes these challenges enabling us to distribute
the data across multiple nodes, resulting in a better accuracy as compared to a serial
setting. We demonstrate our experimental results on two datasets from the medical do-
main. As a part of the future work, we plan to expand our study on the efficacy of a
distributed training approach to other unexplored fields of the medical imaging domain.
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