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Abstract. Multidimensional scaling is a statistical process that aims to
embed high-dimensional data into a lower-dimensional, more manageable
space. Common MDS algorithms tend to have some limitations when fac-
ing large data sets due to their high time and spatial complexities. This pa-
per attempts to tackle the problem by using a stochastic approach to MDS
which uses gradient descent to optimise a loss function defined on randomly
designated quartets of points. This method mitigates the quadratic mem-
ory usage by computing distances on the fly, and has iterations in O(N)
time complexity, with N samples. Experiments show that the proposed
method provides competitive results in reasonable time. Public codes are
available at https://github.com/PierreLambert3/SQuaD-MDS.git.

1 Multidimensional scaling and its limitations

Dimensionality reduction (DR) is the process of mapping high-dimensional (HD)
observations into a lower-dimensional (LD) space such that the LD embedding
is a faithful representation of the HD data. The main DR uses are in machine
learning, to curb the curse of dimensionality, and in visualisation. Mapped data
can reveal structures that would lay hidden from the human perception if left
in HD. Typically, some information is lost by the DR and, therefore, each DR
method has a take on what kind of information should be preserved and what
can be lost. Used frequently in visualisation, -SNE [1] aims at retaining the
neighbourhood of each point according to a distance metric and a perplexity,
which reflects the size of the neighbourhood to preserve. While t-SNE excels
at retaining local structures, sufficiently remote points tend to be considered
equally distant by the algorithm and, therefore, the larger-scale structures can be
distorted. Such distortions can lead to erroneous conclusions by the human user,
who might overestimate the dissimilarity between two clusters that are distant in
the LD embedding. For this reason, using multiple DR paradigms in conjunction
is a good practice in visualisation: another embedding that preserves distances
instead of neighbourhoods would have prevented this erroneous conclusion.
This paper considers metric multidimensional scaling (MDS): a DR technique
that produces a LD embedding such that the pairwise distances in LD reflect
those in HD. MDS minimises a cost function which, in its simplest form, is
the sum of the squared differences between distances in HD and the Euclidean
distances in LD. A common strategy to optimize this cost function is based on
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the SMACOF algorithm [2], involving iterations of O(N?) time complexity with
N samples. This quickly becomes problematic when N grows. SMACOF also
requires the full matrix of pairwise HD distances, consuming O(N?) memory.

Some alternatives with lower time or memory complexities exist, such as the
iterative spring-based model [3], where each point is subject to forces computed
according to two constant-sized sets of points. This enables iterations with O(N)
time complexity. However, the sets are subject to iterative refinements, making
the total number of required iterations increase with the size of the data set. A
different divide-and-conquer approach [4] applies MDS on sub-matrices of the
HD distance matrix and then stitches together the results. Another take on the
problem is proposed in landmark MDS [5], which first embeds a small subset of
the data in LD and then arranges the rest of the points with respect to these
landmarks. Alternatively, the effects of high computational complexities can be
reduced by focusing on certain parts of the LD embedding thanks to the input
of a user [6].

While these accelerated MDS methods provide interesting results, they often
involve multi-step approaches that complicate the algorithm and tend to make
it monolithic in the sense that the optimisation process becomes an intractable
block once the optimisation started. This paper proposes an algorithm that has
O(N) time complexity and does not require a full distance matrix, making it
more memory-efficient. In addition to showing that the algorithm can yield good
distance correlation between the HD and LD spaces, this paper shows that by
using a simple gradient descent optimisation, the algorithm is open for hybrid
approaches, where gradients of different types are mixed.

Section 2 presents the algorithm, while Section 3 is dedicated to an empir-
ical assessment of its quality and speed performance. Section 4 sketches some
conclusions and perspectives.

2 Proposed method

The proposed algorithm performs MDS by using gradient descent on a cost
function defined on quartets of points. Before defining the gradients, this section
starts by explaining how to articulate a distance scaling problem around the use
of quartets.

2.1 Quartet-based optimisation

Let us consider a quartet formed by four points that has a HD distance matrix 0
and a LD Euclidean distance matrix d. If these points have a LD embedding that
perfectly preserves their HD distances, then the relative distance between the
i*™ and the j*" points in LD, d;;, also perfectly matches their relative distance
in HD, 4;;. These relative distances are defined as

dy =i (L L) w0 8= [(, 32, 0)
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A cost function for the preservation of relative distances within this quartet of
points can be defined:

3 4 T T
Cquartet = Za:l Zb:a+1 (6ab - dab)2 . (1)

To apply this quartet approach to the whole data set, the algorithm iteratively
and randomly splits the observations in groups of 4, and the gradient for each
point is computed according to (1). This use of quartets should not be confused
with triplet methods such as stochastic triplet embedding [7], as they work with
data of different natures. Triplet embeddings use partial similarity rankings
of the form ”A is more similar to B than to C” often resulting from human
judgement, whereas the proposed fast MDS method uses HD observations.

Using quartets of points gives constant-time gradients and has a natural
analogy to triangulation (1 point versus 3 others) when applied to a target
dimension of 2. Quartets are also the reason why the full HD distance matrix
isn’t needed : only 6 HD distances are used at any instant. It is noteworthy that
using relative distances precludes any preservation of scale: the LD distances
tend to correlate to those in HD, but the scale in LD will stay close to the scale
at which the embedding is initialised.

2.2 The gradients

Considering a quartet of points with a LD Euclidean distance matrix d and a
HD distance matrix d, I is the 4x4 identity matrix and z, is the value taken for
some LD dimension by the ¢*" point in the quartet. For the sake of concision,
only the gradients for one term in the sum of (1) is shown here, as the other
terms in the sum share similar forms:

A —diy)? 2, o (Talwg —x) + Igj(wg — i) Tq — T
T ow, s . 2

d
be{l,..,.4}\q ab

with § =37, di;. The motivation for using relative distances is that each of the six
LD distances in the quartet contributes to the update for each LD point, as opposed to
direct distance preservation where only three distances would contribute. This results
in the behaviour illustrated in Fig. 1, where each point moves to minimise the error on
the quartet as a whole.
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Fig. 1: Difference in behaviour when using relative distances and raw distances.
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3 Experiments and discussion

To assess the performance of the proposed algorithm in terms of speed and
distance preservation, it is compared to the SMACOF-based MDS [2] on various
data sets. Section 3.1 details our implementation, while Section 3.2 describes
the results.

3.1 Implementation

Our implementation uses a gradient descent optimizer in its simplest form: the
gradients are scaled by a learning rate and then directly subtracted to the po-
sitions of the LD points. During the first part of the optimisation, the HD
distances are squared before being transformed to relative distances. This helps
the optimisation by exaggerating the differences between the distances within a
quartet. Because of the stochastic nature of the optimisation, the updates on the
position of the points tend to be erratic; this isn’t a problem during the first part
of the optimisation, but it renders the fine-tuning of the final positions difficult.
To counter this behaviour, it is important that the learning rate decays to small
values. We determined experimentally that, for embeddings initialised with a
standard deviation around 10, a learning rate starting in the hundreds that de-
cays to 1073 is adequate. Having it decay to greater values tends to reduce the
quality of the results. All the following embeddings using the proposed fast MDS
are given the same hyper-parameters. They result from a single run of 1000 it-
erations, with a target dimension of 2 and a PCA initialisation scaled to have a
standard deviation of 10. Non-PCA initialisations can produce similar results,
but they typically require a larger number of iterations before convergence. The
code can be found at: https://github.com/PierreLambert3/SQuaD-MDS.git.

3.2 Empirical assessment

Seven data sets are featured in this paper, with size N and dimensionality M.
Abalone: (N, M) = (4177, 8); coil20: (N, M) = (1440, 1024); a subset of
MNIST digits: (N, M) = (3400, 784); a subset of MNIST fashion: (N, M) =
(4000, 784); satellite: (N, M) = (4434, 36); a subset of Gisette: (N, M) =
(3700, 4900); RNAseq: (N, M) = (10%, 50). Most sets are available from the
UCI machine learning repository. RNAseq contains single-cell data used in [§];
the same 50 principal components from the selected features are used, as in [8].

Table 1 shows the Pearson correlation between the pairwise distances in HD
and LD for various models on the data sets. The 15* row shows results obtained
with PCA. The 2°¢ row shows the best result of 10 different initialisations for
the SMACOF MDS algorithm as implemented by scikit-learn. The 3™ row is
also the result of a MDS using SMACOF but this time initialised with PCA. The
4*" row is our fast MDS algorithm in its default version, and the last row is an
experiment where the HD distances for the quartets are first transformed non-
linearly before being used by the cost function. This transformation is of the form
d;; = 1 —exp(—(dij — Omin)/(20)) with o being the standard deviation of the HD
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distances in the quartet and d,,;, the smallest HD distance in the quartet. This
transformed distance is then divided by the sum of the transformed distances to
become relative. The purpose of this transformation is to increase the contrast
between the HD distances within the quartet in the hope of reducing the effect
of the concentration of norms [9] when the input dimension is high. In terms of
correlation of distances, Table 1 shows that the proposed method can provide
competitive results, and that its results tend to be particularly good when the
data dimension is high.

abalone | satellite | RNAseq | digits | fashion | coil20 | gisette
PCA 0.82 0.98 0.93 0.50 0.69 0.76 0.45
10x MDS 0.82 0.93 0.93 0.63 0.82 0.80 0.84
PCA-MDS 0.99 0.99 0.90 0.66 0.89 0.84 0.67
fastMDS 0.98 0.97 0.95 0.73 0.94 0.86 0.85
fastMDS-rbf 0.98 0.96 0.96 0.75 0.92 0.87 0.89

Table 1: Correlation of the distances in LD and HD; the data sets are of increas-
ing dimensionality from left to right.
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Fig. 2: Evolution of computation time and distance correlation for samples of
RNAseq of size varying between 10% and 10* with steps of 103.

Figure 2 shows that the fast MDS algorithm runs in linear time with IV, as
opposed to the quadratic scaling of SMACOF MDS; the distance correlation is
stable with different sizes IV, which can be surprising considering that the pro-
portion of HD distances that are used during the optimisation decreases when
N increases. Actually, the number of HD distances used by the proposed al-
gorithm is number_of_iterations™ 6_distances_per_quartet* number_of_quartets, in
this case 103 % 6 %, but the total number of HD distances is w This
supports the intuition that when N is high, using only a subset of the distances
can be sufficient for a good embedding, which is a principle of landmark-based
approaches.

Figure 3 shows some 2-D embeddings of a subset of RNAseq; 'D correlation’
is the Pearson correlation between HD and LD distances and 'Ryx AUC’ is the
AUC of the Ryx(K) curves [10], which reaches 1 when the multi-scale neigh-
bourhoods of the data are well preserved. Since the proposed method relies on a
simple gradient descent, it is possible to combine it with another gradient-based
algorithm. In the 3'¢ scatter plot, we added the quartet based distance gradi-
ents to those of -SNE to obtain a hybrid embedding. The figure shows that
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MDS smacof our fastMDS

D correlation : 0.875 D correlation : 0.905 D correlation : 0.874 D correlation : 0.700
Rnx AUC 10.316 Rnx AUC :0.341 Rnx AUC :0.525 Rnx AUC 10.555

Fig. 3: 2-D embeddings of a subset of RNAseq of size 9300.

this hybrid approach can preserve neighbourhoods quite well while keeping the
distances meaningful.

4 Conclusion and perspectives

Experiments show that the proposed fast MDS method produces competitive
results while keeping the algorithm simple and the computational complexities
low. We may have only scratched the surface of the possibilities that a stochastic
quartet-based approach can offer; we can imagine an extension that would enable
the use of weighted distances, the use of different quartet-based metrics, or an
adaptation for ordinal MDS. Another perspective is to further study the use
of quartet-based distance gradients in a hybrid approach to DR, by mixing the
distance preservation and the neighbourhood preservation paradigms.
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