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Abstract. Fast multi-scale neighbor embedding (f-ms-NE) is an al-
gorithm that maps high-dimensional data to a low-dimensional space by
preserving the multi-scale data neighborhoods. To lower its time complex-
ity, f-ms-NE uses random subsamplings to estimate the data properties at
multiple scales. To improve this estimation and study the f-ms-NE sensi-
tivity to randomness, this paper generalizes the f-ms-NE cost function by
averaging several subsamplings. Experiments reveal that this can slightly
improve the quality of the embeddings while maintaining reasonable com-
putation times. Codes are available at https://github.com/cdebodt/

Fast_Multi-scale_NE.

1 Introduction

Dimension reduction (DR) maps high-dimensional (HD) data to a low-dimensional
(LD) space such that the LD embedding faithfully represents the HD data. Some
information is typically lost in the DR process and, therefore, the faithfulness of
a projection is considered with respect to some criterion. The main uses of DR
are in machine learning, to curb the curse of dimensionality, and in visualisation.

When HD dimension is high, the Euclidean distances between points tend to
concentrate towards similar values [1]. Because of this phenomenon, using dis-
tance preservation as a direct criterion for DR can become problematic. Neigh-
bor embedding (NE) techniques such as stochastic neighbor embedding (SNE)
[2] alleviate the effects of distance concentration by defining neighbor probabil-
ity distributions in both spaces to embed points in LD [3]. These methods are
frequently used in visualization as they tend to produce embeddings that show
well separated, readable clusters and nicely preserve local neighborhoods [4].

Originally, NE algorithms required the user to specify a scale for the neigh-
borhood preservation. By capturing the structures on a single scale, embeddings
produced by these methods can lead the user to erroneous interpretations. More
recently, multi-scale NE approaches were introduced by combining neighborhood
probabilities tuned across various scales [5, 6]. Multi-scale approaches often yield
better results by preserving the distant structures, while still ensuring good lo-
cal neighborhood preservation. However, multi-scale NE methods have a time
complexity of O(N2 logN) with N data points, restricting their use to data sets
of moderate size. A fast version of multi-scale NE (f-ms-NE) [7] has a time
complexity of O(N log2N), with a slight decrease in neighbor preservation as
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a trade-off. To achieve such an acceleration, f-ms-NE relies on random data
subsamplings to capture both the local and global structures in the HD data.
However, the stability of the f-ms-NE performances with respect to the number
of these subsamplings has not been characterized previously.

This paper hence generalizes f-ms-NE by defining cost functions averaged
over multiple random subsamplings, enabling to study the effect of their num-
ber on the LD embeddings. In addition to aiming at increasing DR qual-
ity while preserving manageable computation times, this work further assesses
the sensitivity of f-ms-NE to randomness. Public codes are freely available at
https://github.com/cdebodt/Fast_Multi-scale_NE.

This paper is structured as follows: Section 2 summarizes NE algorithms.
Section 3 explains how f-ms-NE is adapted to consider multiple random subsam-
plings. Section 4 details experimental results by comparing the performances of
the f-ms-NE algorithm across an increasing number of subsamplings, in both
terms of DR quality and speed. Final conclusions are drawn in Section 5.

2 Neighbor embedding algorithms

The f-ms-NE algorithm accelerates multi-scale NE, which is based on single-
scale NE. Section 2.1 first sketches single-scale NE, Section 2.2 then describes
its multi-scale extension, and Section 2.3 finally details the f-ms-NE acceleration.

2.1 Single-scale neighbor embedding

Let Ξ = [ξi]
N
i=1 denote a set of N points in a HD space with M features. Let

X = [xi]
N
i=1 represent these data in a P -dimensional LD space, P ≤M . The HD

and LD distances between the ith and jth points are δij and dij , respectively,
for i ∈ I = {1, ..., N} and j ∈ I \ {i}. SNE [2] aims at preserving pairwise
similarities from HD to LD, which are respectively defined as

σij =
exp(−πiδ2ij/2)∑

k∈I\{i} exp(−πiδ2ik/2)
, sij =

exp(−d2ij/2)∑
k∈I\{i} exp(−d2ik/2)

, σii = sii = 0 . (1)

Precision πi is adapted to the local density in order to tune the HD similarities
to a target scale. The scale is provided by the user in the form of a perplexity
K for the distribution [σij ; j ∈ I \ {i}] such that logK = −

∑
j∈I\{i} σij log σij .

SNE interprets these normalized similarities as neighborhood probabilities
around each point, in order to produce a LD embedding that minimises the sum
of Kullback-Leibler (KL) divergences CSNE =

∑
i∈I,j∈I\{i} σij log (σij/sij).

The t-SNE extension [4] symmetrizes the similarities and considers a Student
t function with one degree of freedom in LD space, to cope with ’crowding’
problems in LD. The HD similarities τij and LD ones tij are now defined as

τij = (σij + σji)/(2N), tij =
(1 + d2ij)

−1∑
k∈I,l∈I\{k}(1 + d2kl)

−1
, τii = tii = 0 . (2)
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2.2 Multi-scale neighbor embedding

The multi-scale SNE method [5] combines SNE similarities computed with expo-
nentially increasing perplexities. Single-scale similarities are indexed by a scale
counter h for i ∈ I and j ∈ I \ {i}:

σijh =
exp(−πihδ2ij/2)∑

k∈I\{i} exp(−πihδ2ik/2)
, sijh =

exp(−pihd2ij/2)∑
k∈I\{i} exp(−pihd2ik/2)

, σiih = siih = 0 .

HD precisions πih are set using perplexities growing as Kh = 2h−1K1, with a
small base perplexity K1 = 2 and 1 ≤ h ≤ H = blog2(N/K1)e, where b·e denotes

rounding. LD precisions pih = ph = K
−2/P
h follow the exponential growth of the

HD precisions. Multi-scale similarities average single-scale ones as

σij = H−1
∑H

h=1
σijh, sij = H−1

∑H

h=1
sijh . (3)

The authors recommend using L-BFGS [8] to optimise the cost function.

2.3 Fast multi-scale neighbor embedding

Single-scale and multi-scale NE methods have time complexities of O(N2) and
O(N2 logN), respectively. The typical smallness of perplexity K with respect
to N enables single-scale methods to consider that sufficiently distant points
have a null HD similarity. Sparse HD similarities can be computed by finding
the sets of nearest neighbors of each point using vantage-point trees [9]. This
reduces their computation time to O(KN logN). On the LD side, a Barnes-
Hut (BH) algorithm [10, 11] approximates efficiently the similarities by relying
on tree structures to compound far-away points, dispensing with computing all
pairwise interactions, reducing the time complexity to O(N logN). The BH
method uses a threshold parameter θ ∈ [0, 1] that determines whether to use the
approximation or not, with higher values meaning rougher but faster estimations.

The largest scale used to compute multi-scale similarities has a perplexity
KH in the O(N) range. At such a scale, the above sparse HD similarity ap-
proximation would require neighbor sets of O(N) size, defeating the purpose of
accelerating the computations. For this reason, reducing the time complexity of
multi-scale NE requires a different approach for the HD side. In [7], the authors

tackle this problem by defining small multi-scale neighbor sets Ĩi for i ∈ I.
To compute Ĩi, the authors define a hierarchy of subsampled HD data sets

{Ξh}Hh=1, where Ξh is a random sample of Ξ with b21−hNe elements drawn
without replacement. A vantage-point tree is created on Ξh for each scale h ∈
{1, ...,H}; the trees are generated in O(N logN) time. For each scale, the

corresponding tree is used to compute the neighborhood Ĩih within the sample
Ξh for i ∈ {1, ..., N}; this takes a total of O(N log2N) time. By having samples
{Ξh}Hh=1 that decrease in size when the scale grows, the accounted neighbors

Ĩih are more and more dispersed in the data cloud, hence capturing larger scale
properties. The multi-scale neighbor sets are then defined as Ĩi := ∪Hh=1Ĩih.
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Like the non-accelerated version, f-ms-NE uses multi-scale similarities aver-
aged over sparse single-scale similarities,

σ̃ij = H−1
H∑
h=1

σ̃ijh, with σ̃ijh =


exp(−π̃ihδ

2
ij/2)∑

k∈Ĩi
exp(−π̃ihδ

2
ik
/2)

if j ∈ Ĩi
0 otherwise

.

Precision π̃ih is fixed such that

K1 = −
∑
j∈Ĩih

σ̃πijh log σ̃
π
ijh where σ̃πijh =


exp(−π̃ihδ

2
ij/2)∑

k∈Ĩih
exp(−π̃ihδ

2
ik
/2)

if j ∈ Ĩih
0 otherwise

.

In the t−distributed version, the authors use symmetrised HD similarities τ̃ij =

(σ̃ij + σ̃ji)/(2N) and optimise the cost function C̃t = −
∑

i∈I,j∈I\{i} τ̃ij log tij .

3 Multiple subsamplings in fast multi-scale NE

In f-ms-NE, the larger-scale structures of the HD data are captured by computing
neighborhoods on samples of decreasing sizes. Therefore, f-ms-NE estimates the
larger-scale data properties with some sensitivity to randomness, as an unlucky
sampling could bypass some important structures within the data. We hence
propose to adapt f-ms-NE by using multiple subsamplings of the HD data, aiming
at reducing the impact of randomness when modeling large-scale structures.

The proposed adaptation is to perform the whole sampling process R times,

to compute sets Ĩir for i ∈ {1, ..., N} and r ∈ {1, ..., R}. The sparse similarities
are computed independently for each batch and the cost function becomes

C̃t = R−1
∑R

r=1

(
−
∑

i∈I,j∈I\{i}
τ̃ijr log tij

)
. (4)

As R is set to a small value independent of N , the time complexity with regards
to N remains unchanged. But as the original cost function is computed R
times, a computation time increase is expected. However, each repetition being
independent, a parallel implementation with R threads can easily be done.

4 Experimental results and discussion

The method is tested on seven data sets of size N and dimensionality M [12].
Anuran: (N ,M) = (7195, 22); Plant: (N ,M) = (9568, 4); Gestures: (N ,M)
= (9901, 18); Satellite: (N ,M) = (6434, 36); Waveform: (N ,M) = (5000, 40);
Theorem: (N ,M) = (6118, 51); and Musk: (N ,M) = (6598, 166). On each set
and for each R ∈ {1, ..., 5}, f-ms-NE with multiple subsamplings is applied 30
times using a random initialisation, and 30 times with a PCA initialisation. The
t-distributed version of the algorithm is used and the target dimension P is 2
for all experiments. Each optimization consists of 30 iterations of the L-BFGS
algorithm and uses a BH threshold θ = 0.75, as these values tend to produce
good DR quality in reasonable time for the original f-ms-NE [7].
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Figure 1 shows the quality of the resulting embeddings. As in [7], their quality
is measured by the area under the curve (AUC) of the relative neighborhood
preservation RNX [13], with a logarithmic scale for the neighborhood size. The
AUC of RNX reaches 1 when the preservation is perfect for all data scales.

Fig. 1: Evolution of the AUC of the RNX curves with the number of subsam-
plings. The y-axis is the AUC, and the x-axis is the number R of subsamplings.
The solid lines are the mean values over 30 trials, the shaded areas correspond to
one standard deviation on each side. The dashed line corresponds to the mean
AUC for the original version of f-ms-NE, which uses one sampling.

We observe that subsampling multiple times has an effect on the DR quality
of the embeddings that f-ms-NE yields. However, the change is often slight when
compared to embeddings produced from a single sampling and, surprisingly, the
change is not always positive. Using multiple subsamplings in conjunction with
a PCA initialisation tends to produce a more consistent increase in quality, but
the magnitude of the increase depends on the data set. The modest benefits
of using multiple subsamplings can suggest that the construction of Ĩi in the
original f-ms-NE algorithm is already quite robust to randomness.

In terms of computation time, we obtain a consistent linear increase in time
with respect to R. With a single thread implementation on the tested computer,
using R = 5 requires approximately twice the time that the algorithm would take
in its original version.
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5 Conclusion

Experimental results indicate that using multiple subsamplings in f-ms-NE can
provide improvements to the DR quality. The moderate nature of these improve-
ments hints that the sampling process used by f-ms-NE enables to model the
multi-scale structures of the HD data with a remarkable robustness with respect
to the randomness.

To further study the influence of randomness on f-ms-NE, alternate subsam-
pling strategies will be envisioned. For instance, using a biased sampling to
increase the diversity of the sampled points in the hierarchy of subsampled HD
data sets {Ξh}Hh=1 is likely to improve the estimation of the global structure of
the HD data.
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