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Abstract. The Viterbi’s algorithm allows to estimate latent time series
according to observations in a hidden Markov model. This algorithm can
be used to merge estimations from different modalities as proposed in
this paper. Such a multi-modal estimation is more efficient than mono-
modal estimations when the modalities are subject to independent noises.
In this paper, this improvement is evaluated in function of noise level of
modalities. Experiences on toy data and actual signals to estimate the fetal
heart rate show that merging modalities will provide better estimations on
average than using the modalities separately.

1 Introduction

Fetal well-being monitoring relies on the analysis of the fetal heart rate (fHR) [1].
The estimation of the fHR can be based on different cardiac signals: e.g., the
heart electrical activities through the electrocardiogram (ECG) [2] or the me-
chanical heart information through the phonocardiogram (PCG) [3]. Their mea-
sures are both subject to different noise sources since these two modalities have
different physiological origins. Based on this, the merging of both modalities
for the estimation of the fHR seems to be an interesting path to gain in perfor-
mance [4].

In this paper, we are interested in estimating an hidden sequence from multi-
modal observations. More precisely, we are investigating under which condition
adding a second modality can improve the estimation of the hidden sequence
compared to using only a single set of observations. The proposed algorithm to
merge the two observations is the Viterbi’s algorithm [5, chap.13] which allows
to estimate a latent time series according to observations. Recent studies al-
ready used the Viterbi’s algorithm for denoising data [6] or for merging different
modalities for classification problem [7].

In the next section, the hidden Markov model (HMM) and the Viterbi’s al-
gorithm are presented. The third section is dedicated to numerical experiments.
A discussion and a conclusion are finally given in the last section.
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2 Multimodal Viterbi’s algorithm

In this section, the multimodal HMM is first presented (Section 2.1) and then
the proposed multimodal Viterbi’s algorithm is detailed (Section 2.2).

2.1 Model’s description

Let Y
(1)
k and Y

(2)
k be two noisy estimations of Xk at time k. The evolution of the

state Xk and the observations Y
(1)
k and Y

(2)
k are modelled with a HMM given

in figure (1a). The matrix A refers to the transition matrix to Xk given Xk−1.

B(1) and B(2) are emission matrices of both observations, respectively, Y
(1)
k and

Y
(2)
k , given the state Xk. The definition of the model parameters are provided

by

∀(i, j) ∈ J1, NK2,


aij = Pr(Xk = j|Xk−1 = i)

b
(1)
ij = Pr(Y

(1)
k = j|Xk = i)

b
(2)
ij = Pr(Y

(2)
k = j|Xk = i)

, (1)

where N is the number of states which are directly written with index i and j for

simplification. Emission noises of Y
(1)
k and Y

(2)
k are assumed to be independent,

so that the joint probability of observations given the state satisfies

∀(i, j,m) ∈ J1, NK3, Pr(Y
(1)
k = j, Y

(2)
k = m|Xk = i) = b

(1)
ij b

(2)
im. (2)

Matrices A, B(1) and B(2) are fixed for the application. Figures (1b) and (1c)
give the ith row plot of the transition matrix and emission matrices (before
normalization), respectively. First, the transition matrix A is built according
to the following idea: large jumps in the variation of the desired state are im-
possible. This idea is reflected by the introduction of a threshold q for which
Pr(Xk = j|Xk−1 = i) = ε if |i − j| > q, with ε very small. Values of the
transition matrix for |i − j| ≤ q are given by a triangular function centered in
i = j. The sum of coefficients for each row of A is normalized to one. Second,

∀(i, j) ∈ J1, NK2, Pr(Y
(1)
k = j|Xk = i) and Pr(Y

(2)
k = j|Xk = i) are given by : Pr(Y

(1)
k = j|Xk = i) = α

(1)
i

(
π(1)N (j; i, (σ

(1)
1 )2) + (1− π(1))N (j; i, (σ

(1)
2 )2)

)
Pr(Y

(2)
k = j|Xk = i) = α

(2)
i

(
π(2)N (j; i, (σ

(2)
1 )2) + (1− π(2))N (j; i, (σ

(2)
2 )2)

) (3)

where N (·;µ;σ) is the value of Gaussian distribution of mean µ and standard
deviation σ evaluated at ·. The first Gaussian has a small standard deviation
(σ

(1)
1 and σ

(2)
1 ) to model instants where observations are close to the desired

state. The instants where noise is predominant are modelled by the second

Gaussian with a large standard deviation (σ
(1)
2 and σ

(2)
2 ). π(1) and π(2) give the

proportion of the first Gaussian in comparison of the second Gaussian. π(1) and

π(2) can be interpreted as a measure of quality of the modalities. α
(1)
i and α

(2)
i

are normalization coefficients to ensure the sum of coefficients per row is equal
to one.

This model setting allows to build toy data similar with the observed fHR
estimations in real conditions.
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(a) HMM. Xk is the latent state and Y
(1)
k

and Y
(2)
k the two observations.

(b) Transition matrix (i−th row).

(c) Emission matrices (i−th row). See
equation (3) for the parameters’ definition.

Fig. 1: Hidden Markov Model to model the fetal heart rate (Xk) according to

two estimations (Y
(1)
k and Y

(2)
k ). (b) and (c) are, respectively, the i−th row

construction of the transition matrix a:j and the emission matrices b
(1)
:j and b

(2)
:j .

2.2 Viterbi’s algorithm

The aim of the Viterbi’s algorithm is to find the state path X0:T = {Xk}k∈J0,T K

according to the observation paths Y
(1)
0:T and Y

(2)
0:T :

X̂0:T = arg max
X0:T

Pr(X0:T |Y (1)
0:T , Y

(2)
0:T ). (4)

To solve this problem, the following recursive formula is used:

µ(Xk) = max
X0:k−1

Pr(X0:k, Y
(1)
0:k , Y

(2)
0:k ) (5)

=

Pr(X0) Pr(Y
(1)
0 |X0) Pr(Y

(2)
0 |X0), for k = 0

max
Xk−1

µ(Xk−1) Pr(Xk|Xk−1) Pr(Y
(1)
k |Xk) Pr(Y

(2)
k |Xk), for k > 0.

µ(Xk) can be interpreted as, for all possible states (Xk), the maximum prob-

ability of transition among all Xk−1 given Y
(1)
k , Y

(2)
k and the previous value

µ(Xk−1). Once µ(Xk) is computed for all k, the path X̂0:T can be deduced by
selecting the index of the maximum µ(Xk) for each k.

3 Experiments

Numerical tests have first been performed on toy data to evaluate how using a
HMM with two modalities gives better results than a HMM with only a single
modality. Then, we illustrate the result of the proposed multimodal Viterbi
fusion on actual fHR signals. In this section, the influence of π(1) and π(2)

defined in (3) is studied. For all experiments, the set of fixed parameters are
summarized in Table 1.

Once the state and observations are sampled, the Viterbi’s algorithm is used
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to predict the state. Three models are compared: two mono-modal models,

which rely on a single observation Y
(1)
k or Y

(2)
k , and a multi-modal, which use

the two observations Y
(1)
k and Y

(2)
k . Let X̂(1), X̂(2) and X̂(1,2) be the estimated

state according to the HMM with the modality Y (1), the modality Y (2) and the
two modalities Y (1) and Y (2), respectively. For each HMM, the root mean square
error (RMSE) is computed to measure the similarity between the true state X

and the predicted state X̂(i): rmse(X̂(i), X) =

√∑T
k=0(X̂

(i)
k −Xk)2/(T + 1).

The following ratio between RMSEs is then computed:

r(1) = rmse(X̂(1), X)/rmse(X̂(1,2), X), (6)

which quantifies the improvement of RMSE between the multi-modal estimation,
X(1,2), and the mono-modal one, X̂(1). Note that we consider arbitrarily that
the first modality Y (1) provides in average the best mono-modal estimation,
X(1), of X, i.e. π(1) ≥ π(2). A ratio r(1) larger than one means that the
multi-modal HMM provides a better result than the mono-modal HMM. r(1)

provides a view of the gain of performance if a second modality, Y (2), is added
compared to only use Y (1) to estimate X. The gain is computed for many sets
of π(1) and π(2)/π(1). For a fixed π(1), the ratio π(2)/π(1) varying between 0.1
and 1 gives how much the second modality is degraded in comparison with the
first one. π(2)/π(1) = 1 means the two modalities have the same quality. Each
configuration {π(1), π(2)/π(1)} is tested fifty times.

Table 2 gives mean values of r(1) for all configurations and Fig. (2) gives box
plots of r(1) for cases π(1) = {0.2; 0.4; 0.6} as illustration. As shown in Table 2,
the ratio r(1) is always greater than one, meaning that adding a second modality
always leads to an improvement in average. As expected, for each value of π(1),
the gain r(1) increases with the ratio π(2)/π(1). This phenomenon can also be
observed in figure (2) for π(1) = 0.4 or 0.6. However, gain values decrease and
get closer to 1 as π(1) increases. In this latter case, this means that adding a
second modality will not improve the estimation if the first modality is already
quite good (i.e. π(1) close to 1). On the contrary, when the first modality is quite
noisy, the ratio r(1) is larger (e.g., it varies from 6.95 to 8.89 when π(1) = 0.1).
However, in such a situation, the RMSE using only the modality Y (1) is very
high (rmse = 68.85 for π(1) = 0.1) and the gain does not compensate the low
performance with a single modality in comparison with the case of π(1) tends to 1.
Note that, when the additional modality is too noisy (i.e. π(2)/π(1) is low), even
if the average gain is larger than 1, this is not always the case for each individual
configuration: see Fig. 2 π(1) = .4 and π(2)/π(1) = .1, the smallest value is less
than 1. In other words, in some few cases, adding a too noisy modality can
deteriorate the estimation compared to using only one modality.

Set of all Number of Transition matrix Emission matrices Initial state
possible states time sample parameters parameters law

J30, 250K T = 5000 q = 3, σ
(1)
1 = σ

(2)
1 = 5, Pr(X0) =

ε = 10−10 σ
(1)
2 = σ

(2)
2 = 80 N (120, 10)

Table 1: Parameters values for numerical tests.
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Fig. 2: Gain of performance r(1) in function of π(2)/π(1) for three values of π(1).
Box plots give median and quantile values of r(1) over the fifty tests for the
different configuration.

An illustration on real data for fHR estimation is given in Fig. (3). Data
preprocessing and fHR estimations are detailed in [2, 3]. Figure (3a) gives the
noisy input observations Y (1) and Y (2) of fHR, Xk, estimated from ECG and
PCG, respectively. Output estimations, X̂(i), are plotted in Figure (3b). The
fHR estimation using mono-modal HMMs sometime fails (e.g., ECG between
690s and 720s or PCG between 640s and 660s). The multi-modal HMM pro-
vides better results and shows the interest of using both modalities for the fHR
estimation. The relative improvement compared to the ECG modality alone is
equal to r(ecg) = 1.37 with a ratio π(pcg)/π(ecg) = 0.97. Despite the difference
with the standard deviations between the real data and the numerical tests, the
gain of performance with real data problem is in the same order of magnitude.

4 Discussion

In this paper, the Viterbi’s algorithm is used to merge two estimations of the
same process. These estimations are jointly modelled using a multi-modal HMM
and the Viterbi’s algorithm allows to build a new estimation according to the
two previous ones used as inputs of the multi-modal HMM. The multi-modal
model is compared to the same model using a single modality. As expected, the
Viterbi’s algorithm succeeds to merge the two estimations into a better one. This
study shows, with numerical tests, how the improvement varies in function of
the noise level of each modality. The illustration on real data provides a coherent
result with the numerical tests. Experiences also show that merging a highly
noisy signal can worsen results. Next studies will be focus on modifications of
the Viterbi’s algorithm to be more robust against poor modelling of the emission
(from the state to the observation) and to help the model to reject modalities
without information.

Mean values
π(1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

π(2)

π(1)

0.2 6.95 1.43 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
0.4 7.16 1.45 1.08 1.08 1.08 1.08 1.08 1.08 1.07 1.07
0.6 7.79 1.77 1.16 1.15 1.14 1.13 1.13 1.13 1.12 1.12
0.8 7.99 1.79 1.21 1.22 1.19 1.19 1.19 1.19 1.18 1.17
1.0 8.89 1.96 1.29 1.26 1.25 1.25 1.24 1.23 1.23 1.23

RMSE(a) 68.85 9.37 5.00 4.24 3.77 3.44 3.19 3.00 2.83 2.67
(a) Mean RMSE over 500 tests of the Viterbi’s algorithm with the modality Y (1) only.

Table 2: Gain of performance r(1) in function of π(1) and π(2)/π(1).
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(a) Input data.

(b) Output data.

Fig. 3: fHR estimation. (a) gives the fHR estimation with the two modalities
separately. The three plot in (b) are the comparison between the reference state
and estimated states using three HMMs: two HMMs with a single modality:
ECG or PCG (the left and the middle plots) and a HMM with the two modalities:
ECG and PCG (the right plot). RMSEs are computed over the full recording
session (∼880 seconds). The initial probability distribution is given by Pr(X0) =
N (135, 50) to be coherent with the range of the fHR variation (110 to 160 bpm).
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