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Abstract. When measuring data with hyperspectral cameras drift in the
data distribution occurs over time and when the sensing device is changed.
Frequently, this drift is a combination of intensity and wavelength shifts.
In this contribution, we demonstrate that transfer component analysis
together with subsampling constitutes a particular efficient and simple
technology for spectral offset elimination which is applied to avoid the
negative impact of drift on the classification performance. We demonstrate
that this approach performs on par or better in comparison to established
methods, and we also provide a theoretical motivation why this technology
can deal with both, intensity as well as wavelength shift provided bounds
on the smoothness of the functional data are given.

1 Introduction

Hyperspectral imaging is a sensing technology frequently used in quality control
in food production and pharmaceutical applications, agriculture, environmen-
tal analysis and medical diagnosis [1]. A challenge in functional data analysis
consists in the question how to achieve a suitable representation of the under-
lying functional signal as (often high-dimensional) vectors which are obtained
by finite sampling. Different approaches for functional data analysis exist such
as an adaptation of vectorial techniques to the underlying functional proper-
ties, specific metrics for high-dimensional data, expansion of the signals along
suitable base functions, or a regularization of machine learning techniques for
functional data analysis [2, 3, 4]. In this contribution, we will focus on signals
from hyperspectral cameras for classification tasks using different approaches.

In practical applications, one core challenge of such sensor technology is the
fact that, while devices are sophisticated, they are subject to changes in the
environment and its physical components, which might alter over time. This
causes drift in the distribution of the data collected at different times or across
different instruments. In the literature, one way to efficiently deal with this
challenge is offered by transfer learning or dedicated shift-invariant representa-
tions, which allow a transfer of an existing classification model to new settings
based on few and possibly unlabeled data [5]. For hyperspectral cameras in the
short-wavelength infrared (SWIR) and the visible near-infrared (VNIR) division
of the electromagnetic spectrum, drift can be categorized into transversal and
vertical shifts. While the measured wavelengths change when the components
of a sensor age over time, introducing transversal shifts to the data distribution,
vertical shifts are caused by changes in the measured intensities. They can be
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caused by changes in lighting or by a different sensitivity of another sensor. In
real world applications both shifts are observed simultaneously.

In this contribution, we investigate the shift characteristics individually to
gain a better understanding on how to tackle them when building robust mod-
els. For this purpose, we create realistic data sets underlying only one type of
drift in different severities based on real data and observed drift. We investigate
and implement the objective which is also underlying transfer component anal-
ysis [6, 7] for the specific settings and domains and evaluate its performance in
comparison to a representation based on a functional base as well as a classical
standardization methods from chemometrics [8] for different application settings.
The (somewhat surprising) superior performance of the first, comparably simple
technology can be substantiated by mathematical bounds.

2 Approaches for shift-invariant spectral data processing

Spectral data representation. Spectral data have a functional form X : R → R,
mapping wavelengths to intensities, whereby typically smooth functions are con-
sidered, e.g. bounds on their modulus of continuity hold. In practice, spectra
are typically observed at a finite number of frequencies only, resulting in pos-
sibly high-dimensional vectors xi ∈ R

d where components of xi correspond to
observations X(L) := (X(l1), . . . , X(ld)) at wavelength li. Typically, d is large,
such that a compact representation or further regularization is necessary.

One common way to represent high-dimensional functional data is an ap-
proximation by a sum of spectral basis functions. One successful approach relies
on Chebyshev polynomials Tj as base functions [4]. In this setting, each d-
dimensional feature vector xi ∈ R

d is represented by d′ coefficients cij of its

approximation based on the first d′ Chebyshev polynomials xi ≈
∑d′

j=0 cijTj(xi)
with Tj as the jth Chebyshev polynomial and ‘≈’ referring to a least squares er-
ror, for example. Details can be found in [9]. A second possibility to reduce the
dimension of (smooth) hyperspectral data is to apply subsampling, i.e. xi ∈ R

d is
mapped to a lower dimensional space by projecting to a subset of the features at
equally spaced intervals. These preprocessing steps have the effect that data can
be represented by lower dimensional vectors, such that a better generalization
ability and efficient processing can be expected for subsequent classification.

Transfer learning for different types of shift. Two types of shift can be present
for spectral data X: (i) intensity/vertical shift, which corresponds to a func-
tion Sv : R → R which is added to each spectrum X, yielding signals of
the form X + Sv with finite-dimensional observation vector (X + Sv)(L) =
(X(l1)+Sv(l1), . . . , X(ld)+Sv(ld))), and (ii) wavelength/transversal shift, which
corresponds to a strictly monotonic function Sh : R → R which affects the wave-
lengths, i.e. the domain X, yielding the signal Sh ◦ X with finite-dimensional
observation vectorX(Sh(L)) = (X(Sh(l1)), . . . , X(Sh(ld))). In real life data sets,
shifts between the distributions of different sensors and over time are expected.

One classical way in the domain of chemometrics to deal with such shift
is offered by standardization methods such as piecewise direct standardization
(PDS) [8, 10]. Essentially, an explicit transformation matrix is determined by
matching values of the original ‘master’ signal to signals of the transferred ‘slave’
corresponding to few neighbored wavelengths. As an alternative to PDS, it has
been shown experimentally in [9] that a representation of spectra by Chebyshev
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polynomials together with subsequent z-transformation is robust to shift in the
data, i.e. a transfer can be done immediately based on this representation. We
will have a closer look at these two approaches in our experimental part.

In addition, we consider the behavior of a special instantiation of transfer
component analysis (TCA) as introduced in the work [6], which, up to our
knowledge, has not been used for transfer learning in the domain of spectral data
analysis yet. Assume two data distributions corresponding to the original data
xi and transferred ones yi are present. Assume a feature map Φ is associated to
the possibly nonlinear model (e.g. corresponding to a specific kernel). TCA aims
for an optimization of the maximum mean discrepancy (MMD) as an important
characteristic of the difference of two distributions with n1 data xi and n2 data
yi respectively: | 1

n1

∑
i Φ(xi) − 1

n2

∑
i Φ(yi)|. Due to the high-dimensionality

of spectral data, models can often be chosen as linear ones in this domain.
In this case, Φ is the identity and minimizing MMD can be done exactly by
an elimination of the offsets: standardizing each data set component-wise is
obtained by subtracting the mean spectrum 1

n1

∑
i xi from xi and

1
n2

∑
i yi from

yi, respectively. We refer to this procedure as offset elimination in the following.
We can show that offset elimination is a particularly effective technology to

deal with vertical drift. In addition, the smoothness of spectra accounts for a
robustness to horizontal drift. More precisely, the following observation holds:

Theorem 1 Assume a classifier f for spectra X is given, assume Y = X + Sv

constitutes a vertical shift. If data are preprocessed with offset elimination, the
accuracy of f on X and Y is the same.

We denote a horizontal shift Sh as limited by ε iff |Sh(l) − l| ≤ ε for all
wavelengths l. Assume the classifier f has sample-margin η on X. Assume f is
uniformly continuous such that f differs by at most η if inputs differ by at most
η1. Assume X consists of uniformly continuous spectra where |X(l1)−X(l2)| ≤
η1/2 for |l1 − l2| ≤ ε. Assume horizontal shift is limited by this value ε. Then
the result of f is the same for X and Y after offset elimination.

Proof: Assume the number of spectra is n. The first part follows from the
observation that offset elimination of spectra with vertical shift yields (xi +
Sv)(l) −

∑
j(xj + Sv)(l)/n = xi(l) −

∑
j xj(l)/n hence spectra stay invariant

under vertical shift after offset elimination.
The second part follows from the estimation |(xi(l)−

∑
j xj(l)/n)− (yi(l)−∑

j yj(l)/n)| ≤ |xi(l)− xi(Sh(l))|+
∑

j |xj(l)− xj(Sh(l))|/n ≤ η1/2+ η1/2 = η1
for limited horizontal shift. Hence the difference of the function values of these
spectra after offset elimination is smaller than the margin η, i.e. the classification
prescription is the same.

3 Experiments

Datasets. We use the following data measured by hyperspectral cameras in the
SWIR and the VNIR division of the electromagnetic spectrum:

The SWIR data set contains the hyperspectral signature of 1500 pixels of Ara-
bica, Robusta and immature Arabica coffee beans for each training and
testing with balanced class distribution. For each pixel intensities at 249
wavelengths in the range of 1008.85nm and 2496.22nm are measured by a
SWIR320me hyperspectral camera from Norsk Elektro Optikk.
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(a) SWIR data set.
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(b) VNIR data set.

Fig. 1: Example spectra (black) with moderate artificial intensity (orange) and
transversal shifts (blue).

For the VNIR data set we recorded metal plates colored with RAL3000 fire red
colors by different manufacturers with a NEO Hyspex VNIR-1600 camera
by the same manufacturer. The data set consists of 3000 samples, which
are balanced for the 4 classes, for each training and testing. Each sample
contains data for 158 wavelengths in the range of 410.99nm and 982.68nm.

These initial data sets are enriched by horizontal and vertical shift as follows:

Intensity Shift: We know from observation that intensity shift is wavelength
specific but smooth. We simulate shift by randomly drawing shifts from a
standard normal distribution at every 10th wavelength and interpolating
in between. We multiply this random noise by different factors for different
shift strengths. As previous measurements indicate that the shift is either
positive or negative for all wavelengths, we add the minimum of the random
shift as an offset. A visualization can be found in Fig. 1.

Transversal Shift: For both hyperspectral cameras, we use the re-calibration re-
port from the manufacturer, which were created every four years, to com-
pute a baseline transversal shift. We interpolate the original data and
collect the intensities at the shifted wavelengths. We repeat this also for
multiples of the documented shift to simulate severe (albeit possibly un-
reasonable) transversal shifts, see Fig. 1.

Methods. We compare the performance of the different pipelines:

Chebyshev: Chebyshev coefficients are computed by approximating each spec-
trum by Chebyshev polynomials up to degree 50 based on the Chebyshev
nodes, see [9] for details.

Chebyshev, z-transform: Additionally, a z-transformation is applied to the ob-
tained coefficients.

Offset-Elimination: Offset-Elimination with prior subsampling is performed as
defined above. During subsampling, each 5th feature is taken on the SWIR
data set and each third feature on the VNIR data set, resulting in 50/53
features per sample.
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(a) Intensity shift, SWIR data set.
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(b) Intensity shift, VNIR data set.
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(c) Transversal shift, SWIR data set.
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(d) Transversal shift, VNIR data set.

Fig. 2: Mean transfer accuracies of logistic regression over 5 experimental runs
on datasets with intensity and transversal shifts with increasing drift severities.

Subsampled: As a baseline subsampling of the raw spectra with the same sam-
pling rates as above is considered.

PDS: We transform the data of the transfer data set by the previously defined
PDS method. Hyperparameters are optimized for the respective data set.

For each of these methods, we repeat our experiments 5 times and report the
average transfer accuracy for different drift severities. After trying out different
regularization strategies and hyper-parameters for logistic regression, we ended
up with a logistic regression classifier without penalty.

Results. In our experiments with intensity shift, we observe constant high
transfer accuracies for offset elimination and the z-transformed Chebyshev co-
efficients over all tested shift severities (see Fig. 2a, 2b). In contrast, for the
Chebyshev representation without z-transformation our model declines with in-
creasing shifts and performs slightly worse than the subsampled spectra. The
experiments confirm Theorem 1 and show that a representation by Chebyshev
coefficients alone is not invariant against intensity shift. The results on the PDS
representation are poor on the SWIR and similar to the baseline on VNIR data.

On transversal shift, all methods decline with increasing shift (see Fig. 2c, 2d),
whereby the reported results deal with extremal settings, i.e. four times larger
than natural shift. While the results for the representation by offset elimination
and z-transformed Chebyshev decline slowly with increasing transversal shifts,
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the basic Chebyshev and the subsampled spectral representation decline very
fast. For the SWIR dataset, they reach a level of an accuracy of 0.33 which
corresponds to random guessing at a mean absolute shift of about 10nm. Sim-
ilar to the experiment with intensity shift, the accuracies obtained by the PDS
representation are low for all shifts. On the VNIR dataset (Fig. 2d) the PDS rep-
resentation yields better results than offset elimintion and z-scored Chebyshev
coefficients for severe transversal shifts. Still, for more realistic smaller shifts,
the use of the latter representations results in higher accuracies.

Overall, subsampling with offset elimination seems a simple but suitable
choice to represent the non-stationary functional spectral data for reasonable
ranges of shift. Chebyshev representations require a z-transformation.

4 Conclusion

In this work we evaluated shift on spectral data by distinguishing between wave-
length and intensity shifts. We showed that methods incorporating an elimina-
tion of the offset are invariant against intensity shifts. Additionally, we found
that they are robust to moderate transversal shifts. As intensity shifts are fre-
quently more severe than wavelength shifts in the data we analyzed so far, offset
elimination is a rather simple method to build robust pipelines for real world
applications. Further work should focus on finding suitable methods for data
which comes from low quality devices (such as smartphones).
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[3] Erzsébet Merényi, William H. Farrand, James V. Taranik, and Timothy B. Minor. Classi-
fication of hyperspectral imagery with neural networks: comparison to conventional tools.
EURASIP J. Adv. Signal Process., 2014:71, 2014.

[4] Friedrich Melchert, Gabriele Bani, Udo Seiffert, and Michael Biehl. Adaptive basis
functions for prototype-based classification of functional data. Neural Comput. Appl.,
32(24):18213–18223, 2020.

[5] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, H. Zhu, Hui Xiong,
and Q. He. A comprehensive survey on transfer learning. Proceedings of the IEEE,
109:43–76, 2021.

[6] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain adaptation
via transfer component analysis. IEEE Trans. Neural Networks, 22(2):199–210, 2011.

[7] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex
Smola. Correcting sample selection bias by unlabeled data. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Adv Neural Inf Process Syst, volume 19. MIT Press, 2007.

[8] Yongdong Wang, David Veltkamp, and Bruce Kowalski. Multivariate instrument stan-
dardization. Annals of Chemsitry, 63:2750–2756, 1991.

[9] Friedrich Melchert, Udo Seiffert, and Michael Biehl. Polynomial approximation of spectral
data in lvq and relevance learning. Machine Learning Reports, 3:25–32, 2015.

[10] E. Bouveresse and D.L. Massart. Improvement of the piecewise direct standardization
procedure for the transfer of nir spectra for multivariate calibration. Chemom. Intell.
Lab. Syst., 32:201–213, 1996.

52

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  




