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Abstract. We present a generic formula characterizing the learning of

our model under a variety of label-noise settings. This is achieved by us-

ing the symbolic regressor model, a genetic programming algorithm, from

which we learn functions based on a large set of performance evaluations.

Equipped with the knowledge from the regressor, we find a universal for-

mula governing the model performance with respect to noise. This result

from our empirical approach could have qualitative applications in mit-

igating the performance of real-world noisy data and could complement

certain noise-robust models.

1 Introduction

The accuracy of classification relies on the correctness of the available data
labels. For many applications, high quality labels are lacking. Nonetheless, cheap
labels can be obtained by crowd sourcing or by distant supervision. However,
noises can arise from human annotations via these crowd-sourcing platforms [1],
and data-labelling methods such as weakly supervised learning employed when
(ground-truth) labels are scarce [2]. Therefore, training models under noise has
become an important enterprise.

How does a model’s performance change when there are noises in the dataset?
Intuitively, a higher noise level will result in a poorer generalization by the
model. Would the performance deteriorate in a linear fashion, or non-linearly?
To learn the relation between system performance and noise level, we use a sym-
bolic regressor. A symbolic regressor tackles regression problems using a genetic
programming algorithm [3]. It assumes a model structure to be an algebraic ex-
pression. Genetic operations are performed to discover the underlying structure
in a mathematical form. The idea for using logistic regression and simulation
originates in [4]. Symbolic regressor as a powerful tool is used to learn theo-
retical formulas for complex problems which might otherwise be non-trivial to
derive and prove.

This paper attempts to bridge the gap in the understanding of noise level
and system performance. We begin by first creating artificial noise guided by
conditional probabilities. Next we learn a mathematical relation between our
model performance and the amount of noise that we inject into the dataset. By
measuring the model performance under the synthetic noises in a controlled way,
this approach could provide potential insights into its possible generalization in
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a real-world setting. We choose F1-score to quantify our model performance for
our Named Entity Recognition (NER) task. As F1-score takes a value between 0
and 1, one can already hypothesize that a model performance must be described
by a bounded function, not a solely monotonous function.

Our main contribution is the discovery of an algebraic expression generically
relating the model performance and noise level, independent of the noise types.
By leveraging the mathematical formula we can estimate the model performance
across all noise levels. Perhaps more exciting is the other way round, when one
can infer the amount of noise (and possible noise type) in the dataset knowing the
performance of the model. Apart from that, there exist a number of theoretical
work on the topic of noisy labels and noise-robust learning algorithms such
as [5] which requires an apriori knowledge of noise levels. Our finding could
complement such approaches, where the noise rates will be informed by our
formula.

2 Background and Experimental Setup

For synthetic noise generation, we consider the following three noise types. For
k classes of label, we flip the true (or clean) label y to create a noisy label ŷ,
according to the conditional probabilities which are characterized by a noise level
ǫ. The probabilities can be represented in terms of noise matrices M .
Uniform noise [6],

Muni
i,j = puni(ŷ = j|y = i) =

{

1 − ǫ , i = j
ǫ

k−1
, i 6= j .

Single label-flip noise [7],

M
sf
i,j = psf (ŷ = j|y = i) =

{

1 − ǫ , i = j

ǫ , one i 6= j

0 , otherwise .

Multi-flip noise [8], [9],

k
∑

j=1

M
mf
i,j =

k
∑

j=1

pmf (ŷ = j|y = i) = 1 , pmf (ŷ = j|y = i) ≥ 0 , ∀i, j .

We examine our model performance on the CoNLL2003 (English) dataset
[10]. There are five labels in our NER task: {O, PER, ORG, LOC, MISC},
where each takes the value of 0 to 4 respectively. Following [9] we use a bi-
LSTM based model for our task.

First we measure the performance of our model (F1) on different noise levels
(ǫ). We consider 10 varied noise settings in a range of noise levels from 0.01 to
0.99. 80% of these results serve as the training dataset and the remaining 20%
for testing, for our symbolic regression task. The performance of the regressor
is evaluated based on the training mean-squared-error (MSE), test MSE, and
coefficient of determination R2.
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1. Flip labels 1 & 2 (f12) 2. Flip labels 1 & 4 (f14)










1 0 0 0 0
0 1 − ǫ ǫ 0 0
0 ǫ 1 − ǫ 0 0
0 0 0 1 0
0 0 0 0 1





















1 0 0 0 0
0 1 − ǫ 0 0 ǫ
0 0 1 0 0
0 0 0 1 0
0 ǫ 0 0 1 − ǫ











3. Consecutive single-flip (cs) 4. Uniform noise (uni)










1 − ǫ ǫ 0 0 0
0 1 − ǫ ǫ 0 0
0 0 1 − ǫ ǫ 0
0 0 0 1 − ǫ ǫ
ǫ 0 0 0 1 − ǫ





















1 − ǫ ǫ/4 ǫ/4 ǫ/4 ǫ/4
ǫ/4 1 − ǫ ǫ/4 ǫ/4 ǫ/4
ǫ/4 ǫ/4 1 − ǫ ǫ/4 ǫ/4
ǫ/4 ǫ/4 ǫ/4 1 − ǫ ǫ/4
ǫ/4 ǫ/4 ǫ/4 ǫ/4 1 − ǫ











5.
Label 0 unchanged

+ others in uniform noise (0uni)
6.

Label 0 & 1 unchanged
+ others in uniform noise (01uni)











1 0 0 0 0
0 1 − ǫ ǫ/3 ǫ/3 ǫ/3
0 ǫ/3 1 − ǫ ǫ/3 ǫ/3
0 ǫ/3 ǫ/3 1 − ǫ ǫ/3
0 ǫ/3 ǫ/3 ǫ/3 1 − ǫ





















1 0 0 0 0
0 1 0 0 0
0 0 1 − ǫ ǫ/2 ǫ/2
0 0 ǫ/2 1 − ǫ ǫ/2
0 0 ǫ/2 ǫ/2 1 − ǫ











7. Alternate single-flip (alt) 8. A multi-flip (mult)










1 − ǫ 0 ǫ 0 0
0 1 − ǫ 0 ǫ 0
0 0 1 − ǫ 0 ǫ
ǫ 0 0 1 − ǫ 0
0 ǫ 0 0 1 − ǫ





















0.1 0.01 0.09 0.3 0.5
0 0.9 0 0.05 0.05
0 0 1 − ǫ 0 ǫ

0.02 0 0 0.03 0.95
1 − ǫ 0 0 ǫ 0











9. Flip labels 3 & 4 (f34) 10. Flip labels 1 & 3 (f13)










1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 − ǫ ǫ
0 0 0 ǫ 1 − ǫ





















1 0 0 0 0
0 1 − ǫ 0 ǫ 0
0 0 1 0 0
0 ǫ 0 1 − ǫ 0
0 0 0 0 1











Table 1: Noise matrices studied.

In particular, we consider the following 10 noise representations (Table 1).
Fig. 1 shows an overview of the model behaviour under the various noise

representations considered, as described in Table 1. Typically, the performance
decays drastically when the noise level is higher than 0.5. Among all the noise
settings, the range of F1 performance is the smallest for our choice of a multi-flip
noise, depicted in Fig. 2.
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Fig. 1: 10 noise settings as num-
bered in Table 1.
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Fig. 2: A multi-flip noise (noise 8 in
Fig. 1, shown here for better visibil-
ity.)
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3 Regression Results

The performance results are first modelled by the symbolic regressor. Then we
refine the results further by manual fitting, where we obtain a single mathemat-
ical description.

3.1 Symbolic Regressor Model

We simplified the formulas from the regressor as a post processing step. From
the symbolic regressor [3], we obtain two types of expressions, depending on the
noise setting,

F1type 1 = α1 ǫ+ α2 + α3 tanh(α4 ǫ+ α5)

F1type 2 = β1 tanh(β2 ǫ− β3) + β4 tanh(β5 ǫ− β6) + β7

with constants αm, βn ∈ R, m = 1, .., 5, n = 1, .., 7. The complete results in Ta-
ble 2 are shown up to two decimal places for the corresponding αm and βn values.

Noise α1 α2 α3 α4 α5 MSE (test)
f12 −6 63.89 −19 12 −5.62 3.24
f14 10 61.97 −20 7 −3.59 2.12
f13 −6 62.59 −20 15 −7.59 6.80

01uni −13 64.32 −19 12 −7.30 2.86
alt 2 42.62 −40 9 −4.37 4.47
f34 1 67.18 −20 3 −1.62 2.18

Noise β1 β2 β3 β4 β5 β6 β7 MSE (test)
cs −19 12 −6.00 −19 24 −11.60 43.71 9.03

uni (Fig. 3) −20 9 −5.66 −20 18 −12.63 40.00 4.96
0uni −19 12 −7.30 −19 12 −9.11 43.53 4.25

Table 2: Results of the equation parameters and test MSE from the symbolic regressor.

A multi-flip (noise 8):
F1mult1 = 29.59− 10 tanh(3 ǫ− 0.92) + 10 tanh(3 ǫ+ 0.58)
F1mult2 = 35.74 + 2 ǫ− 9 tanh(3 ǫ− 1.28)

Notice that there is no linear term predicted in the type 2 expression. Mean-
while, it occurs that for the case of the multi-flip noise setting, the symbolic
regressor can produce two equivalently well-fitted formulas: F1mult1 with an
R2-score ≈ 0.943 (test MSE ≈ 1.37), and F1mult2 with an R2-score ≈ 0.935
(test MSE ≈ 1.55), where one of them comes with a linear term and the other
without.

3.2 A Manual Fit

Having learned of an occurring pattern in the expressions from the symbolic
regressor, let us now fit our model performance by using only

F1 = −α ǫ+ β − γ tanh(λ ǫ− κ) ,

538

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



0.0 0.2 0.4 0.6 0.8 1.0

Noise level

0

20

40

60

80

F
1

Fig. 3: A fit for noise uni by the
symbolic regressor.

Fig. 4: Noise cs and alt under our
manual fitting.

with positive constants α, β, γ, λ, κ ∈ R>0. We have the freedom to tailor these
parameters. The complete results are given in Table 3.

Noise α β γ λ κ MSE
f12 7 63 19 8 4 6.06
f13 7 63 19 8 4 6.4
f14 11 73 11 14 7 2.76
cs 28 56 28 20 10 11.27
alt 28 56 28 20 10 10.19
uni 30 56 30 19 13 5.58
0uni 18 54 30 13 9 5.42
01uni 13 65 19 12 7 6.76
f34 1 69 18 3 1.5 2.91
mult 6 38 4 8 4 1.06

Table 3: Results of the equation parameters and MSE from our manual fitting.

We found a good single description for the two cases of flips denoted by f12
and f13, and also one for the consecutive and alternate single-flips. We remark
that there are two reasonable solutions found for the alternate single-flip case.
Besides the one shared with the consecutive single-flip, F1alt2 = −17 ǫ + 51 −
34 tanh(16 ǫ − 8) presents a good fit as well with a MSEalt2 ≈ 10.26. Note the
differences in the constants. F1alt2 will require more parameters to be specified
than F1cs,alt.

An important finding here is that the parameters in the argument of the tanh
term are related by a factor of 2 when the model performance looks symmetrical
(Fig. 4). On the contrary, results from the uniform noise, “label 0 unchanged
+ others in uniform noise”, and “label 0 & 1 unchanged + others in uniform
noise” do not possess such property.

Finally, depending on the noise, the expressions are parametrized by one to
five parameters. For example,
F101uni = −α ǫ+β−γ tanh(λ ǫ−κ), where α = 13, β = 19, γ = 12, λ = 7, κ = 65;
F1f12,f13 = −α ǫ+ 9α− γ tanh(2κ ǫ− κ), where α = 7, γ = 19, κ = 4;
F10uni = 2 (−3α ǫ+ 9α− 5α tanh(λ ǫ− 3α)), where α = 3, λ = 13;
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F1cs,alt = 14(−α ǫ+ 2α− α tanh(10α ǫ− 5α)), where α = 2.

4 Conclusions

For the CoNLL03 dataset under the 10 chosen noise settings, our model perfor-
mance can be satisfactorily described by 8 expressions (with the corresponding
values for the parameters) mapping noise level ǫ to F1-score, in the form of

F1 = −α ǫ+ β − γ tanh(λ ǫ− κ) .

It is composed of a bounded function (tanh) as well as a monotonic function (the
linear component). The performance declines gradually in the beginning then
substantially. Led by the results from the symbolic regressor, we are able to find
such a universal relation. Furthermore, when the model performance presents a
mirror symmetry around the mid range of the noise level, the general expression
is simplified with λ = 2κ. Therefore, if this special property is fulfilled, one can
rule out the existence of a uniform noise-like contamination in the data.

The applicability of our current findings to other datasets and tasks is left
for future work. More importantly this formula should help us in developing a
theory for the relation of noise level and system performance.
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