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Abstract. Neuroimaging techniques have shown to be valuable when
studying brain activity. This paper uses Magnetoencephalography (MEG)
data, provided by the Human Connectome Project (HCP), and different
deep learning models to perform brain decoding. Specifically, we investi-
gate to which extent one can infer the task performed by a subject based
on its MEG data. In order to capture the most relevant features of the
signals, self and global attention are incorporated into our models. The
obtained results show that the inclusion of attention improves the perfor-
mance and generalization of the models across subjects.

1 Introduction

Magnetoencephalography (MEG) is a non-invasive technique for investigating
neuronal activity. It allows neuroscientists to study properties of the working
human brain. Recent interest in machine learning techniques has led to the de-
velopment of data-driven models to learn its underlying patterns. They have
been successfully employed to reveal neurological patterns for many diseases
and disorders [4, 2]. While there has been extensive research into human activ-
ity classification using EEG data [5, 12, 8, 7], there are relatively fewer studies
performed for MEG data. Compared to EEG data, MEG signals are more ex-
pensive and complex to obtain, yet, they are more precise due to their higher
spatio-temporal resolution. The authors in [11] predicted the direction of sub-
jects’ hand-movement using Regularized Linear Discriminant Analysis method
and EEG/MEG signals. Friston et al. [3] studied how to integrate multiple
modalities, restrictions and subjects to achieve higher reproducibility of cortical
response across subjects, using MEG, EEG and fMRI data. Zhang et al. [12]
explored intention recognition based on EEG by combining recurrent and convo-
lutional components. Lawhern et al. [5] propose an EGG-based architecture that
can extract interpretable features from neurophysiological phenomena. In this
paper, we augment two deep learning architectures by incorporating attention
mechanisms for the purpose of brain decoding using MEG data.

2 Preliminaries

Attention mechanisms allow the models to capture long-range dependencies, and
highlight/suppress relevant/irrelevant parts of the input. The models used in
this paper are equipped with two types of attention: self and global.
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2.1 Convolutional Multi Head Self-Attention

This mechanism is introduced in [1], and combines convolutions and multi-head
self-attention [10]. The key (K), value (V) and query (Q) are extracted from the
input (X), and the output of the hth head, i.e. Oh, is calculated as follows:

Oh = Softmax(
QKT√

dhk
)V, Q = XWq, K = XWk, and V = XWv. (1)

Here dhk is the dimension of the queries per attention head. The outputs of the
heads are combined and concatenated with a convolution as follows:

Heads(X) = Concat[O1, ...,On]Wo, Output = Concat[Conv(X),Heads(X)], (2)

where Wq, Wk, Wv and Wo are linear transformations learned during training.

2.2 Global Attention

The used Luong’s style of global attention is introduced in [6]. Given all source
hidden states h̄s (input attention layer) and the target hidden state ht (last ele-
ment input), one obtains the score between the two entities using score(h̄s, ht)=
hT
t Wah̄s. An attention score vector at is obtained through the dot product be-

tween ht and score(h̄s, ht), followed by a softmax function. A context vector ct
is derived as the weighted sum between at and h̄s. Then it calculates the output
h̃ as follows: h̃ = tanh(Wc[ct : ht], where Wa and Wc are learnable parameters.

3 Proposed Models

Here, we use previously studied architectures used to analyze EEG signals as
core models. These core models mainly rely on convolutions, which operate in a
local scope and thus cannot explicitly capture global dependencies. To address
this locality issue, we extend these models by equipping them with different
attention mechanisms. Furthermore, the models are adapted to suit MEG data
analysis. In the subsequent sections the applied adaptation will be discussed in
detail. The models and data used in our experiments can be found on Github
by IsmailAlaouiAbdellaoui here.

3.1 Attention Augmented EEGNet (AA-EEGNet)

The model proposed in [5] serves as the basis for our first architecture. AA-
EEGNet is a CNN mainly composed of three convolutional layers. First, a
1×K convolution acts as a band-pass filter, separating ranges of frequency and
extracting temporal features from them. Next, a C × 1 depth-wise convolution
extracts spatial features for each frequency range. These two convolutions act in
the same way as the Filter Bank Common Spatial Pattern (FBCSP). Lastly, the
model includes a separable convolution, composed of a 1×D depth-wise convo-
lution, which summarizes features, followed by a 1 × 1 point-wise convolution,
which combines features. After this sequence, a softmax classifier classifies the
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extracted features. We augment the first convolutional layer with multi-head
self-attention and add global attention before the softmax classifier to enhance
its performance. Contrary to [5], we use 16, 2 and 32 filters for the three convo-
lutional layers, respectively, as well as two attention heads. K and D are set to
128 and 16, respectively. C is set to the number of channels in the data. This
was empirically found to be the optimal configuration.

3.2 Attention Augmented Cascade Network (AA-CascadeNet)

The architecture in [12] is used as the backbone of our model. Motivated by
the approach in [12], we adopt a 2D representation of the input to take into
account the spatial information given by the different sensors. In particular, we
convert the 1D MEG recordings into a 2D mesh in which the sensors’ locations
are captured. This mesh Mt ∈ RN×L depicts a top-down view of the human
scalp at each time step t, as shown below. A similar input mesh representation
has been used in [12].

Mt =



0 0 0 0 0 0 0 0 0 0 s121t 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 s122t s90t s89t s120t s152t 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 s123t s91t s62t s61t s88t s119t s151t 0 0 0 0 0 0 0

0 0 0 0 0 0 s124t s92t s63t s38t s37t s60t s87t s118t s150t 0 0 0 0 0 0

0 0 0 0 s177t s153t s93t s64t s39t s20t s19t s36t s59t s86t s117t s149t s176t s195t 0 0 0

s229t s212t s178t s154t s126t s94t s65t s40t s21t s6t s5t s18t s35t s58t s85t s116t s148t s175t s194t s228t s248t

s230t s213t s179t s155t s127t s95t s66t s41t s22t s7t s4t s17t s34t s57t s84t s115t s147t s174t s193t s227t s247t

0 s231t s196t s156t s128t s96t s67t s42t s23t s8t s3t s16t s33t s56t s83t s114t s146t s173t s211t s246t 0

0 s232t s197t s157t s129t s97t s68t s43t s24t s9t s2t s15t s32t s55t s82t s113t s145t s172t s210t s245t 0

0 s233t s198t s158t s130t s98t s69t s44t s25t s10t s1t s14t s31t s54t s81t s112t s144t s171t s209t s244t 0

0 0 s214t s180t s131t s99t s70t s45t s26t s11t s12t s13t s30t s53t s80t s111t s143t s192t s226t 0 0

0 0 0 0 s159t s132t s100t s71t s46t s27t s28t s29t s52t s79t s110t s142t s170t 0 0 0 0

0 0 0 s181t s160t s133t s101t s72t s47t s48t s49t s50t s51t s78t s109t s141t s169t s191t 0 0 0

0 0 s215t s199t s182t s161t s134t s102t s73t s74t s75t s76t s77t s108t s140t s168t s190t s208t s225t 0 0

0 0 s234t s216t s200t s183t s162t s135t s103t s104t s105t s106t s107t s139t s167t s189t s207t s224t s243t 0 0

0 0 0 0 s235t s217t s201t s184t s163t s136t s137t s138t s166t s188t s206t s223t s242t 0 0 0 0

0 0 0 0 0 0 s236t s218t s202t s185t s164t s165t s187t s205t s222t s241t 0 0 0 0 0

0 0 0 0 0 0 0 0 s219t s203t s186t s204t s221t 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 s237t s220t s240t 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 s238t s239t 0 0 0 0 0 0 0 0 0



Fig. 1: Mesh input representation of the AA-CascadeNet.

Here, each non-zero element sjt corresponds to a specific sensor value at time
t. We concatenate multiple meshes along the time axis to create a tensor T ∈
RN×L×D, where D is the number of meshes Mt. Due to the multi-input nature
of our model, we use multiple tensors P , resulting in an input I ∈ RP×N×L×D.
AA-CascadeNet is a multi-input model, where every input goes through three
convolutional and two LSTM layers before being merged in a cascade fashion, as
described in [12]. While the convolutions extract spatial features, the LSTM’s
extract temporal features. Lastly, a softmax classifier classifies the extracted
features. We augment the first convolutional layer in each input with multi-
head self-attention and add global attention between the two LSTM layers in
each input. Contrary to [12], we use 1, 2 and 4 filters for the three convolutional
layers, respectively, as well as two attention heads and 125 fully connected units.
Further, the optimal number of meshes in the input (D) found is 100. This was
empirically found to be the optimal configuration.
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4 Data Description

MEG data comes from the database of the Human Connectome Project (HCP)[9].
Specifically, we use the 1200 Subjects Release (S1200) dataset. It counts with 248
magnetometer channels, recording at a sampling rate of 2034.51 Hz. We picked
the subjects that have MEG data, and filtered them to 18, discarding those with
a significantly small amount of data. The subjects are in 4 different states during
the recording, requiring activity from separated brain regions: (i) Resting state,
(ii) Story vs. Math state, (iii) Working Memory state and (iv) Motor state. For
more details on the data, please refer to the official documentation.

5 Experiments

5.1 Data Preprocessing

Since the order of magnitude of MEG data is considerably small, we apply nor-
malization for A-CascadeNet and scaling of ×105 for the AA-EEGNet. For AA-
EEGNet, every recording is segmented into smaller segments and then classified
individually. We use segments of 0.7s with 33% overlapping between them. For
AA-CascadeNet, every mesh described in section 3.2 represents one time-step.
Also, a 50% overlapping between the number of inputs, i.e. P (see section 3.2),
across data samples is used.

5.2 Experimental setup

In an intra-subject setup, we considered different MEG recordings of individual
subjects for training and test, achieving perfect intra-subject classification. In
the inter-subject setup, we selected a group of 12 and 6 subjects for training
and test, respectively. In the latter case, the same number of recordings per
subject were used. Specifically, the duration of every recording per subject is as
follows: • Resting state: 3 runs of 6 minutes each. • Story vs. Math state:
2 runs of 7 minutes each. • Working Memory state: 2 runs of 10 minutes
each. • Motor state: 2 runs of 14 minutes each. Our objective is to perform
a multi-class classification of these 4 tasks. We use categorical cross-entropy as
a loss function, Adam to optimize it and a learning rate 1e−4. When training
AA-CascadeNet, we use a batch size of 64, and when training AA-EEGNet, 16.

6 Results and discussion

The obtained accuracy for the models on the test set are tabulated in Table 1.
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Table 1: Cross subject classification accuracy of all the models.

Model No Attention Self Att. Self & Global Att.

AA-EEGNet 0.83 ±0.15 0.90 ± 0.08 0.90 ± 0.08

AA-CascadeNet 0.91 ± 0.07 0.92 ± 0.08 0.93 ± 0.06

From the presented results, we can notice that the incorporation of attention
enhances the performance of both models. When using the base models (no
attention), AA-CascadeNet is significantly superior to AA-EEGNet. Due to its
LSTM operations, AA-CascadeNet can capture long-range dependencies more
effectively. However, when attention is included, their performances are compa-
rable. This is thanks to the attention mechanisms that are especially beneficial to
address the locality issue in CNN’s. The convolutional filters in the AA-EEGNet
and feature maps from the convolutional layers in the AA-CascadeNet are shown
in Fig. 2 (a) and (b) respectively. While the visualizations at the top of the
figure correspond with the base networks (no attention), the ones at the bottom
correspond with the attention augmented networks. In Fig. 2 (a), one can

Fig. 2: The four images at the top are generated with the base networks and the four at the bottom
are generated with the models incorporating attention. (a) Conv. Filters AA-EEGNet. (b) Feature

Maps AA-CascadeNet: 1st Conv. layer at the left and 3th Conv. layer at the right.

observe that the model without attention weights more intensely a few specific
time-steps (lighter areas). In contrast, the model that incorporates attention
weights the input time-steps in a completely different manner. In the same way,
we can notice a difference in the AA-CascadeNet’s feature maps. In the first
column of Fig.2 (b) (feature maps of 1st Conv layer), some input channels are
intensely weighted when attention is included. Thus the network identifies the
most relevant channels for the task. Moreover, in the second column of Fig.2
(b) (feature maps of 3th Conv layer), we can see how the mesh representation
is lost as the data goes through several convolutional layers. Nevertheless, the
mesh representation is kept when attention is included in the model.
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7 Conclusion

In this paper, different architectures for analyzing EEG brain signals are adapted
and enhanced with various attention mechanisms to perform MEG-based brain
decoding. Here, we found that integrating attention in the models leads to
enhanced performance. In particular, models that solely rely on convolutional
operations can benefit greatly from using this mechanism. Moreover, that at-
tention mechanisms have shown to be a convincing technique to achieve a more
efficient extraction of features without the need of having domain knowledge.
Finally, we also show a potentially good model transferability between EEG
decoding and MEG decoding, even though the nature of the data is different.

References

[1] I. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le. Attention augmented convolutional
networks. In Proceedings of the IEEE International Conference on Computer Vision,
pages 3286–3295, 2019.

[2] C. Davatzikos, D. Shen, R. C. Gur, X. Wu, D. Liu, Y. Fan, P. Hughett, B. Turetsky, and
R. Gur. Whole-brain morphometric study of schizophrenia revealing a spatially complex
set of focal abnormalities. Archives of general psychiatry, 62(11):1218–1227, 2005.

[3] R. N. Henson, D. G. Wakeman, V. Litvak, and K. J. Friston. A parametric empirical
bayesian framework for the eeg/meg inverse problem: generative models for multi-subject
and multi-modal integration. Frontiers in human neuroscience, 5:76, 2011.
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