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Abstract. Decision Trees (DTs) and Random Forests (RFs) are popular
models in Machine Learning (ML) thanks to their interpretability and ef-
ficiency to solve real-world problems. However, DTs may sometimes learn
rules that treat different groups of people unfairly, by paying attention
to sensitive features like for example gender, age, income, language, etc.
Even if several solutions have been proposed to reduce the unfairness for
different ML algorithms, few of them apply to DTs. This work aims to
transpose a successful method proposed by Zafar et al. [1] to reduce the
unfairness in boundary based ML models to DTs.

1 Introduction

Machine learning (ML) takes an increasingly important place in our society. It
is used in many areas, even when it can directly affect citizens such as in hiring
processes [2], health care [3], etc. However, ML algorithms may sometimes learn
rules that treat different groups of people unfairly due to (un)intentional bias in
data. For example, models that rely on sensitive features such as gender, age,
income or language to take decisions should probably be rejected. Furthermore,
some works [4, 5] show that simply removing these features from data is not
sufficient since it ignores, sometimes complex, correlations with other features.

This concern led to a new area of research that aims to reduce the unfairness
in ML models [6]. However, few of the existing methods propose a flexible way
to reduce unfairness in Decision Trees (DTs) and Random Forests (RFs), while
these models remain very popular models in the ML community.

A few years ago, Zafar et al. [1] proposed a powerful and “flexible constraint-
based framework to enable the design of fair margin-based classifiers”. They
show how straightforward it is to use their framework for convex boundary-based
classifiers (like logistic regression, SVM, etc.) thanks to the simple expression
of the distance to the decision boundary in these cases. We propose then to
extend this framework to DTs where, unlike in Zafar et al. [1], there is no such
analytical expression of the distance to the decision boundary. To do so, we use
the distance to the decision boundary as defined by Alvarez [7]. This leads to
DTs that benefit from a powerful and flexible way to design fair models.

Section 2 describes the notion of unfairness in ML. Section 3 presents the
state of the art in order to build fair DTs as well as the work of Zafar et al. [1].
Section 4 presents our work. Section 5 and Section 6 present the experiments
and the discussion respectively, before concluding in Section 7.

∗The first two authors contributed equally.
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2 Background: On the Notion of Unfairness in ML

Several statistical measures have been proposed to define the fairness prop-
erty [6] for ML models. We rely on the work of Zafar et al. [1], which revisits
unfairness according to popular notions that include disparate impact and dis-
parate mistreatment. First, disparate impact consists in providing outputs that
benefit disproportionately to a group of people sharing the same value of the
sensitive feature than other groups. Therefore, a classifier does not suffer from
disparate impact if p(ŷ|z = 0) = p(ŷ|z = 1) or equivalently p(ŷ|z) = p(ŷ), where
z is a binary sensitive feature. Second, the disparate mistreatment refers to
the equality of opportunity and a binary classifier is said to be fair according to
disparate mistreatment if the misclassification rates, for different groups having
different values of the sensitive feature, are equal.

3 Related Work

While several works have been proposed to learn ML models under fairness
constraints (usually on differentiable models), very few exist on models such as
DTs. Kamiran et al. [5] propose data pre-processing by relabelling and reweight-
ing instances so as to reduce bias in data. However, as pre-processing (i) can-
not eliminate discrimination that may come from the learning algorithm, and
(ii) may miss complex correlations with other features, the same authors later
propose the first discrimination-aware DT algorithm [8]. They introduce the
information gain sensitivity, which measures the level of discrimination induced
by a split. Similarly, Raff et al. [9] develop a fair version of the impurity score
based on the Gini index. Instead of using impurity measures, Xhang et al. [10]
propose a fairness gain based on the disparate impact measure. However, none
of them are flexible, in the sense that they do not present a framework able at
the same time to handle (i) different types of unfairness, (ii) m-ary classification
and (iii) multiple sensitive features. Another notable work is the one of Aghaei
et al. [11] who propose a mixed integer programming (MIP) formulation to learn
optimal fair DTs. Nonetheless, MIP problems pose a scalability concern and, as
highlighted by authors, their approach is computationally expensive.

While these previous works in DTs are usually limited to disparate impact,
Zafar et al. [1] recently proposed a flexible approach to enforce fairness con-
straints through the decision boundary. They introduce a tractable proxy mea-
sure of unfairness, which is the covariance between the sensitive feature and the
signed distance of instances to the decision boundary of the model. For disparate
impact and disparate mistreatment, their problem can be formalized as

minimize L(θ) s.t. either
∣∣∣Cov

(
z, dθ(x)

)∣∣∣ ≤ γ or
∣∣∣Cov

(
z,min

(
0, y dθ(x)

))∣∣∣ ≤ γ,
where dθ(x) is the signed distance of the instance x to the decision boundary
of the classifier and γ is a positive threshold. Notice that only one of the con-
straints is used, depending on the goal. The first constraint aims to enforce (but
does not guarantee) independence between the decision boundary of the model
and the sensitive feature, i.e., p

(
dθ(x) ≥ 0|z

)
≈ p

(
dθ(x) ≥ 0

)
, thus vanishing
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disparate impact. Similarly, the second constraint seeks independence between
the sensitive feature and the misclassification rate, thus vanishing disparate mis-
treatment. Despite being attractive and flexible, this framework requires to
explicitly know dθ(x), which is unfortunately not the case for DTs.

4 A Boundary-Based Method to Learn Fairer DTs

This section shows how to use the developments presented in Section 3 in DTs.
To do so, one should (i) evaluate the distance of an instance to the decision
boundary and (ii) introduce the unfairness as a constraint during the training.

4.1 Evaluating the Distance to the Decision Boundary

Alvarez et al. [7] proposed a method to compute the distance of an instance
x ∈ Rd to the decision boundary in DTs. For each decision path in the tree that
would lead to another label than the one of x, and for all conditions xu ≷ b that
are false along that path, the value of the feature u is changed by b to produce
a new instance x′. Otherwise, x′u = xu. The distance to the decision boundary
is then defined as dθ (x) = min d (x) for all leaves where

d (x) =

√√√√ d∑
u=1

(xu − x′u)
2
. (1)

4.2 Learning Fairer DTs

Once an expression of the distance to the decision boundary dθ (x) is obtained, it
is possible to transpose the idea in Section 3 to DTs. Here, in order to illustrate
our methodology, we choose to focus on the first unfairness notion introduced
in Section 2: Disparate Impact (DI). This will be extended to other unfairness
notions in further work. In order to be integrated into splitting criteria and to
constrain learning, unfairness in terms of DI can be assessed with the correlation

CorrDI =
1

Nσzσdθ

∑
(xi,zi)∈D

(zi − z̄) dθ (xi) , (2)

where z is the sensitive feature, z̄ its mean value and σz and σdθ are the standard
deviations of z and dθ. Notice that, contrarily to what is performed by Zafar
et al. [1], we used a correlation instead of a covariance to assess the unfairness.
Correlation |CorrDI | has the advantage to be included in [0, 1], as for the entropy
in binary classification. Thus, it will be easier to manage the trade-off between
accuracy and unfairness. Indeed, unfairness is introduced as a penalty term
when considering a particular split by updating the definition of the gain to

gain = I0 − sI1 − (1− s) I2 − λ |CorrDI | , (3)

where I0 is the impurity of the parent node, I1 and I2 are the impurity of the
left and right child respectively, and s is the fraction of instances that will be
assigned to the left child. Then, using the correlation instead of the covariance
makes it easier to choose the meta-parameter λ that trades off between accuracy
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and unfairness. Thanks to Equation (3), if λ > 0, a split may be rejected if it
increases too much the DI (i.e., if the split is too much correlated with z).

It is important to note that the above developments are presented in the
particular case of a binary classification task with only one binary sensitive
feature, and where the DI is used to assess the unfairness. However, as presented
by Zafar et al. [1], it is easy to extend to m-ary classification, other types of
unfairness (see Section 2) and/or multiple categorical sensitive features.

5 Experiments

We implemented a version of the CART algorithm with the heuristic presented
in Equation (3) to learn DTs in a top-down fashion. Among all possible splits,
the one that leads to the greater gain is retained, at each level of the tree, until
a stopping criterion is reached or none of the splits leads to a positive gain.
The first dataset is an artificial dataset for binary classification that we called
synthetic. It is built similarly to what is proposed by Zafar et al. [1] by drawing
3,000 instances from two different 2-d multivariate normal distributions, and a
binary feature z correlated to the class label using a Bernouilli distribution. We
also used the well-known German Credit and Adult Income datasets to test our
methods on real-world problems. Table 1 summarizes these three datasets, along
with the associated size, dimension, sensitive feature and classification task.

Name N d Sensitive feature Task
Synthetic 3,000 3 z = 0 / z = 1 y = −1 / y = 1
German Credit 1,000 20 Age ≥ 25 Good / Bad Credit
Adult Income 45,222 14 Male / Female Income < / ≥ 50k

Table 1: Details of the datasets used for our experiments.

For each dataset, we trained DTs and RFs made of 50 DTs. In both cases the
maximum number of leaves is fixed to 15 to avoid overfitting. The entropy is cho-
sen as the splitting criterion. During the training process, CorrDI is computed
by Equation (2) and used in Equation (3) to assess the unfairness. 40 values
for λ between 0 and 10 are tested. When training RFs, bootstrapping is used
to randomly select 500, 150 and 5,000 instances for synthetic, German Credit
and Adult Income, respectively. Meta-parameters are fixed to these acceptable
values in order to perform fair comparisons of the models for different values of
λ. All the experiments are performed on 30 independent runs to compensate for
the randomness when splitting the data into training and testing sets.

Figure 1 shows the results obtained for the three datasets and averaged over
the 30 runs. It shows the evolution of the accuracy and the DI with respect to
λ for both simple DTs and RFs. In accordance with previous work [1], the DI
of each model is assessed during testing by computing |p (ŷ|z = 0)− p (ŷ|z = 1) |
as explained in Section 2.

6 Discussion

In the case of synthetic, very similar results are obtained for simple DTs and RFs.
When λ increases, splits that lead to bigger DI are more and more penalized.
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Fig. 1: Evolution of accuracy and DI with respect to λ on synthetic (1st row),
German Credit (2nd row) and Adult Income (3rd row) for both DTs and RFs.
Note that the DI is not assessed using Equation (2), but by computing instead
the probabilities as explained in Section 2. Legend are shared by the columns.

They tend to be rejected and the DI consequently decreases. However, since
the penalization increases, the change in selected splits also leads to a decreased
accuracy. For both DTs and RFs, a good trade-off between accuracy and unfair-
ness is achieved at the plateau for λ approximately in the range [0.8, 1.9]. For
these values, the drop in accuracy is compensated by a significant DI reduction.

For German Credit, the DI is lower than for other two datasets. For DTs,
our method is not able to further reduce the DI much. However, for RFs, a rapid
drop in DI is observed for λ < 0.5, whereas the accuracy decreases more slowly.

For Adult Income, similar results to those obtained for synthetic are obtained,
with a plateau for λ ∈ [2, 4] for RFs. DI can be reduced for both simple DTs
and RFs. The instability of DTs for large λ values may be explained by the fact
that the CART algorithm performs a greedy search, i.e., a succession of local
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optimizations that impact each other. Penalization may force CART to explore
new directions and lead to more interesting solutions.

7 Conclusion

This work presents an adaptation for DT-based classifiers of the developments
proposed by Zafar et al. [1] to reduce the unfairness in convex-boundary-based
ML models. The proposed solution presents the advantage of being very flexible
in its design of fair classifiers and could be easily extended in further work to
handle multiple types of unfairness, m-ary classification and/or multiple cate-
gorical sensitive features. We tested it on different biased datasets, and it allows
us to train DTs and RFs with an adjustable accuracy / unfairness trade-off.
More extensive experiments should be performed to (i) better characterize its
limitations, (ii) compare it with a baseline and (iii) investigate other choices to
assess the unfairness than Equation (2) that would be more adapted for DTs.
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