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Abstract. The last few decades have seen a faster development of digital
systems for observing the mobility of people and goods. Various sensing
systems - such as radio communication, Wi-Fi, Bluetooth, validation of
smart cards, mobile phone, and road traffic monitoring systems - have
enabled researchers and practitioners to acquire large amounts of data,
which generally refer to individual and collective trajectories. The mobil-
ity data can be further enriched with side information, such as text corpora
from social media, survey data, and weather information. These massive
data, temporally and spatially structured, can benefit from advanced ma-
chine learning and data mining methods, providing decision aid tools, and
contributing to the development of safer, cleaner, and more efficient trans-
portation systems. They can also help to implement new mobility services
for the user. This article provides an overview of methodological advances
in temporal and spatial mobility data processing.

1 Introduction

This special session will be an opportunity to present recent advances in mobility
data analysis. This field refers to descriptive methods, generally based on unsu-
pervised learning, highlighting the main uses, routines, mobility patterns, and
provides a basis for anomaly detection. The second field of interest in mobility
data processing in the scope of this special session concerns predictive analyt-
ics, which performs in a supervised learning framework to predict quantities of
interest such as transport demand or operating conditions. The implementation
of these methods faces challenges related to the incompleteness, heterogeneity,
and strong temporal and spatial correlation within the data, and their high
dimensionality or volume.

The paper is organized as follows. Section 2 details structural time series
decomposition applied to mobility data and gives an example of its application.
Section 3 presents predictive models dedicated to forecast mobility demand.
Section 4 focuses on tensor learning and factorization applied to mobility data.

2 Structural time series decomposition applied to mobility
data

Considering mobility data as time series, structural models [1] have been used
to extract from them multiple latent components, each representing an aspect of
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the original profile [2, 3]. One of the advantages of such decompositions is that
the resulting components can be interpreted and predicted more easily than the
raw series. In particular, it becomes possible to identify specific patterns such as
a long-term trend, repeating seasonal patterns (day, week, year), calendar phe-
nomena (bank holidays ...), or the influence of exogenous phenomena (concerts,
strikes, health crisis ...). In the following, we first describe these models and
then show their practical use on mobility data. This work is part of the study
conducted in [3].

2.1 Structural time series modeling

Given an observed time series (y1, . . . , yT ), with yt ∈ R, the typical structural
model can be written as follows:

yt = `t + st +

p∑
j=1

β
(j)
t x

(j)
t + εt, εt ∼ N (0, σ2), (1)

where `t, st, εt are the trend, seasonal and noise components, and the β
(j)
t are the

coefficients associated to p known covariates x
(j)
t ∈ R. To model their dynamic

effects, the components `t, st and β
(j)
t are usually represented in a stochastic

form using auto-regressive processes [1]. Structural models are a more flexible
alternative to iterative decomposition schemes such as Seasonal and Trend de-
composition using Loess (STL) [4], or Census X-13ARIMA [5]. Their advantage
lies in the fact that they are part of the more general framework of state-space
models [6] and thus can benefit from estimation tools such as the Kalman filter,
the Expectation-Maximization (EM) algorithm and Bayesian model selection
criteria. However, their practical implementation requires databases collected
over relatively long time periods and the incorporation of a priori knowledge in
the model to increase their interpretive power. They have been widely used in
several application fields such as economics [7], tourism [8], meteorology [9] or
energy consumption [10] and have been found to be of great interest in analyzing
mobility data.

The case study presented in this article concerns the decomposition of daily
ridership data at a major station (La Defense Grande Arche: RER A) of the
Paris railway network, which allowed us to answer questions such as:

• How do the variations in the original time series which is very often noisy
translate into each component?

• What is the impact of exogenous events on passengers’ decisions to use
public transport?

The data were collected over a nine-year period, which constitutes an opportu-
nity for this type of analysis. Indeed, this relatively long period of data collection
allows the advent of several punctual or redundant events such as maintenance
works, strikes, COVID-19 health crisis. The structural model retained for these
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data has a double seasonality (weekly and annual) and has been used with some
regularity constraints on the trend and seasonal component dynamics [3]. Figure
1 shows the time series and its main resulting components. As it can be seen,
a time series of public transport ridership is very noisy. Its decomposition into
several components to which we assign meaning is therefore useful for a better
analysis of long-term and mid-term phenomena on the ridership, such as trend
and seasonal variations (annual, weekly), as shown in Figure 1.
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Fig. 1: Decomposition of the time series (yt) of flows entering a railway station
(La Defense Grande Arche: RER A) into log-scaled trend (`t), annual seasonality
(st), and residuals (εt); Figure taken from reference [3]

The decomposition also allows a better understanding of the impact of spe-
cific exogenous events on passenger usage of public transport. Figure 2 shows
for this purpose the regression component related to the Covid-19 crisis, and
more particularly the lockdown and post-lockdown periods. The health cri-
sis has strongly impacted people’s movements: most of the office workers who
travel daily could not go to work during this period because of the lockdown.
As it can be observed, the post-lockdown period also significantly impacted the
public transport usage since telecommuting and social distancing was still rec-
ommended.

It should be noticed that in mobility analyses, structural decomposition mod-
els have also been used for prediction purposes. The authors in [2] developed
structural models to predict the rate of a bike sharing system usage. We can also
cite the work carried out by [11], where these models were used for short-term
prediction of bicycle flows. In their study on the prediction of time series of car
counts at some Dublin intersections, the authors in [12] presented the decompo-
sition of a time series into three components: trend, seasonality, and residuals.
In [13], the authors used the same kind of model to forecast the monthly traffic
volume of the next twelve months from a key corridor in New-Jersey.

The presented use case also opens the perspective of simultaneously modeling
several time series associated with multiple stations, as in [12]. This multivari-
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Fig. 2: Sum of regressive components associated with lockdown and post-
lockdown periods and 95% confidence interval for incoming flows; Figure taken
from reference [3]

ate approach could be extended to search for common dynamic factors within
mobility time series.

3 Predictive models to forecast mobility demand

Predictive models and machine learnings techniques are used quite commonly
to predict car traffic and have now diffused into main stream applications like
google maps or waze. Such applications use floating car data at a massive scale
for short term traffic forecasting. Other transportation modes also benefit from
such works with other data sources. This section will detail some of the works
done recently with smart card data and trains loads data in the context of public
transport demand prediction and put them in perspectives with forectasting
approaches used in the transportation field more generally.

Since 2004, the use of smart card data to analyse mobility in public trans-
portation has received substantial attention from researchers. More recently,
studies on mobility analysis have revolved around passenger demand forecast-
ing. A distinction can be made between research that relates to forecasting
Origin-Destination (OD) matrices and research that attempts to forecast pas-
senger flows at a specific point or the load of a specific vehicule (e.g. train,
bus). Knowledge about these factors is indeed essential for planning, operation
and management in any transportation network, but each of these areas uses
different types of data.

The passenger demand forecasting goals differ depending on the time horizon.
Long-term forecasting aims to forecast demand with data available at the long-
term period in advance (e.g., time features and planned events), which can be
very useful for improving transport supply schedule. In contrast, the forecasting
process can also account for the last observations, in which case it is generally
referred to as short-term forecasting. In the future, in the case of an atypical
situation, the main goal for transport operators is to use the forecasted passenger
demand to optimize transport system operation to match transport supply to
the atypical demand or propose to the passenger an alternative way to reach
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their destination.
Short-term forecasting, which corresponds to a few time ahead forecasting,

has been studied with different models. As an example, [14] used multiscale RBF
networks to forecast the number of alighting passengers at different Beijing sub-
way stations multiple time steps ahead (t+15 and t+30 minutes) by taking the
number of boarding passengers at the other stations of the subway network into
account. In this study, the authors performed an in-depth analysis of the results
obtained under particular event scenarios. Other examples of subway passenger
flow forecasting include the work of [15], where the authors predicted passenger
flows of the next time step (t+2 minutes). The authors used a Bayesian network
model and predicted multiple passenger flows (entry and exit) at all the stations
of a subway line of the Paris network. In recent years, recurrent neural networks
(RNN), in particular LSTM (introduced by [16]), have shown their efficiency in
load prediction compared to standard neural networks by managing temporal
dependencies [17, 18, 19, 20]. LSTM architectures are powerful in dealing with
non-linear temporal dependencies in data. However, these models are usually
combined with a spatial component to extract features from a network to address
spatial dependencies. Thus hybrid models [19, 21, 22] divided the task into a
temporal brick, most of the time an LSTM, and a spatial brick. The spatial brick
can take many forms. For instance, a two-dimensional network [19] can consider
spatio-temporal correlation in the traffic network. For multi-lane short-term
traffic prediction, [21] replaced a standard LSTM with a convolutional LSTM to
address large transport networks. Attention mechanisms (popularized by [23])
can be used in one-dimensional convolutional neural networks (1D CNN) and
Gated Recurrent Units (GRU) to improve the generalization capacity of the
models [22].

The above-mentioned studies are therefore built on regular time sampling,
ignoring the real transport schedule. They forecast aggregated outflows and
inflows over a fixed time interval for stations or metro lines. Temporal vari-
ability within the time series due to the transport schedule induces irregular
temporal sampling. It makes it difficult to apply techniques that usually exploit
the structural regularity of time series [18] such as previous LSTM or ARIMA
frameworks. [18] used an encoder-predictor to take into account the transport
schedule in their LSTM train load predictor. Another approach to deal with this
specificity was introduced recently [24]. With such an approach, train load data
are processed with an image-oriented methodology. First, the metro traffic is
represented by generating a multi-channel image, exhibiting the spatial informa-
tion of the trains running on a metro line while taking into account the irregular
temporal sampling of the train loads. Input image denotes the ticket valida-
tion, time interval between trains, and waiting time at stations for all trains
(in columns) and all station stops (in rows) over some time. Eventually, the
output image represents the train loads. The prediction problem boils down to
an inpainting / image-to-image translation problem that can be addressed with
the standard deep-learning architecture used for image processing (e.g. U-net,
CNN).
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4 Tensor Learning and Factorization

A tensor is a multidimensional array [25], a natural way to organize urban mobil-
ity data. For example, we can represent the trip information of a metro system
into a three-order (origin × destination × time) tensor. Each element in the
tensor denotes the number of trips at a certain origin, destination, and time.
Richer information, such as mode and user type, can be easily represented in a
higher-order tensor. Mobility data usually exist strong repeated patterns and
spatiotemporal correlation [26, 27]. Extracting these underlying patterns from
high-dimensional tensors is a core step in mobility modelling, and tensor factor-
ization is a powerful tool to achieve this goal. The idea of tensor factorization
is to approximate the original tensor by the product of several much smaller
matrices/tensors leveraging the low-rank property of the data. Tensor factoriza-
tion can be considered as a high-order version of matrix factorization or singular
value decomposition (SVD). Typical tensor factorization methods include CAN-
DECOMP/PARAFAC (CP) decomposition [28] and tucker decomposition [29]
(see [25] for a good introduction of tensor factorization). This section reviews
representative works on mobility pattern mining using tensor factorization.

In a two-dimensional case, matrix factorization has been used in understand-
ing mobility patterns, e.g., [30, 31]. In a higher-dimensional setting, an early
work [32] organized the taxi trips of Beijing into a three-order (origin × desti-
nation × time) tensor and developed a regularized non-negative tucker decom-
position method for pattern discovery. Because the factorization of a tensor is
often not unique, point of interest (POI) data were used in [32] as auxiliary
information to regularize the decomposition. The results showed meaningful
spatial clusters and temporal structures of taxi trips. Based on different types
of mobility data and regularization methods, research similar to [32] includes
[33, 34]. Besides using a single matrix or tensor, [35] used a coupled decom-
position to detect transit pattern, where an originc× destination matrix and
an origin × transfer × destination tensor share common factor loadings. The
coupled approach increases the robustness of the decomposition.

The above research solves tensor factorization by minimizing the reconstruc-
tion error. On the other hand, tensor factorization can be considered from a
probabilistic perspective and solved by statistical inferences [36]. For exam-
ple [37] use Latent Dirichlet Allocation (LDA) to decompose the Bike Sharing
System trips of Paris organized into a three-order tensor (origin × destination
× time) and [38] applied a probabilistic tucker decomposition to understand
mobility patterns of smart card transactions in Singapore. A recent work [39]
integrated probabilistic tensor factorization in a Bayesian supervised learning
model to predict the service choice of ride-sourcing users. The tensor factor-
ization links the dependent variable (i.e., the type of service) with a large set
of predictor variables through interpretable hidden patterns, identifying criti-
cal variables for the prediction. Besides analyzing collective mobility patterns,
tensor factorization can also be used for individual-specific analysis. Similar to
topic models and LDA [40], we can assume a group of people share the same
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mobility patterns (in the form of factor matrices) while each person is charac-
terized by a specific distribution over mobility patterns. Under this structure,
[41, 42] applied an LDA model to extract latent topics and individual topic dis-
tributions from smart card data. The model of [41] can be used to infer unknown
destinations in smart card transactions given the origin and trip time. A similar
two-dimensional LDA model was applied on a license plate recognition data set
for individual travel behavior pattern discovery and anomaly detection [43].

Other than mobility pattern mining, tensor factorization has a wide range of
applications in more general spatiotemporal modelling tasks. Such as traffic data
imputation [44, 45, 46, 47], anomaly detection [43, 48, 49], and traffic prediction
[50, 51, 52, 53].

5 Conclusion

This article has detailed a set of machine learning and data mining methods to
exploit mobility data. These data are rich in both spatial and temporal aspects
and present some challenges for their exploitation. We have introduced three
different frameworks:

• the first one, based on structral time series decomposition, is relevant when
a long history of data is available and when the objective is to analyze
human mobility behaviors on different time scales;

• the second one aimed at predicting travel demand in the short, medium,
or long term; in this case, the issue is to develop machine learning models
in a supervised framework for prediction tasks, taking into account the
specificities of the domain, i.e., the particularities of the transport network,
the irregular temporal sampling, or the links between the temporal series
to be predicted;

• the third framework is tensor learning and factorization, which aims to
extract underlying patterns from high-dimensional tensors.

The session will provide a range of current research in this area by highlight-
ing the potential of machine learning and data mining methods to improve the
movement of people in increasingly crowded cities with sustainable development
criteria.
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Allocation: Application to Vélib’ Bike Sharing System of Paris. In TRB 93rd Annual
meeting, page 19p, France, January 2014. Transportation Research Board.

[38] Lijun Sun and Kay Axhausen. Understanding urban mobility patterns with a probabilistic
tensor factorization framework. Transportation Research Part B Methodological, 91:511–
524, 06 2016.

461

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



[39] Zheng Zhu, Lijun Sun, Xiqun Chen, and Hai Yang. Integrating probabilistic tensor
factorization with bayesian supervised learning for dynamic ridesharing pattern analysis.
Transportation Research Part C: Emerging Technologies, 124:102916, 2021.

[40] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.
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