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Abstract. Global retailers have assortments that contain hundreds of
thousands of products that can be linked by several types of relation-
ships like style compatibility, ”bought together”, ”watched together”, etc.
Graphs are a natural representation for assortments, where products are
nodes and relations are edges. Relations like style compatibility are often
produced by a manual process and therefore do not cover uniformly the
whole graph. We propose to use inductive learning to enhance a graph
encoding style compatibility of a fashion assortment, leveraging rich node
information comprising textual descriptions and visual data. Then, we
show how the proposed graph enhancement improves substantially the
performance on transductive tasks with a minor impact on graph sparsity.

1 Introduction

Fashion data are interesting for research because of their polymorphism and
the complexity of the relations that can be defined among them, i.e. compati-
bility, transactional, similarity, substitution, etc. Fashion items are considered
compatible if they can be worn simultaneously, meaning that the clothing items
are part of an outfit. Our work develops on fashion data assembled by H&M. In
this context, the compatibility of fashion items is manually determined by ex-
perts on item pairs. The assortment, however, is composed by tens of thousands
articles and the number of pairs grows quadratically with the number of articles,
making exhaustive manual labelling highly impractical. Furthermore, when new
products enter in the assortment, they stay disconnected for a rather long period.
The lack of exhaustive indications of item compatibility can considerably impact
the performance of recommendation systems that are leveraging such informa-
tion to provide personalized and style-coherent advice to customers. Motivated
by this, we tackle the problem of augmenting such sparse item compatibility
information with newly discovered compatibility relationships. Existing works
have addressed the problem with recurrent models [1, 2, 3] or with contrastive
learning [4, 5]. Our approach, instead, leverages inductive learning on graphs
[6]. Inductive link prediction, as opposed to transductive link prediction that
assumes all nodes to be present at training time, aims at predicting links for
new, unobserved, nodes. However, inductive link prediction usually obtains a
lower performance on existing nodes. The method we propose is using inductive
link prediction to enrich the graph with new links and then train a transductive
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model on the new graph to maximize the link prediction performance, getting in
this way the best of both worlds. Following [7], we represent items as nodes and
compatibility as edges of the graph, together with their associated information
(node and edge labels). In particular, our items are bound to rich textual and
visual information, for which we define an appropriate encoding as node features.
We then put forward an inductive learning approach based on the DEAL model
[8], that has been extended to exploit the richness of the multimodal node fea-
tures available in our industrial case study. As a first result, we show how these
features positively contribute to relationship inference. The trained inductive
model is then applied to produce an enriched graph for a second transductive
task, modelling clothing pairing suggestions as a link prediction problem. The
empirical analysis shows that the enriched graph yields to substantially improved
link prediction performance over the original graph, at the cost of a minor de-
crease in graph sparsity. This second result is particularly interesting as it shows
the effectiveness and efficiency of a pipeline of inductive-transductive methods
when dealing with predictive tasks over large-scale sparse graphs.

2 Inductive-Transductive Graph Processing Pipeline

For inductive learning, we consider DEAL [8], an architecture leveraging two
encoders, an attribute-oriented encoder Ha and a structure-oriented encoder Hs,
as well as an alignment mechanism. The aim of the attribute-oriented encoder
is to project a node’s feature vector from the high-dimensional feature space
into a low-dimensional embedding space, while the structure-oriented encoder
generates an embedding vector of the node, by considering only the structural
information of the graph (no node features). If two graph nodes are connected
(positive samples), then their Ha and Hs embedding vectors will have high sim-
ilarity. To this end, we measure similarity of the embedding vectors by cosine
similarity. A Tight Alignment mechanism [8] is used to maximize the similarity
between the embedding vectors produced by both Ha and Hs for each node.
Both encoders are updated during the training process and the embeddings are
kept aligned. The attribute-oriented encoder can be realized by MLP or GCN-
like modules [8]. In our implementation we use the personalized ranking loss
in [8]. Transductive learning is implemented with consolidated deep graph net-
works. In particular, in our empirical analysis, we confront the performance
of three popular methods that well represent three different families of neural
approaches for graphs that are Graph SAGE [9] model, GCN [10] and GAT [11].
As anticipated, the focus of this work is to propose and assess inductive learning
as a preliminary step to improve transductive task performance on sparsely con-
nected, large-scale graphs. The process comprises a first step where the DEAL
[8] inductive model is trained and the best performing model (in validation) is
selected. As a second step, we run the best inductive model selected on the orig-
inal graph to enrich it with the introduction of new edges. For this second step,
we define two thresholds: the maximum node degree and a probability of link
existence among the nodes. As a final step, we train the transductive models
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on the new structure. In addition to the pipeline above, we extend DEAL [8] to
work on textual, visual, or concatenation of textual and visual features, instead
of the tabular features used in [8]. The embedding of the textual and visual
information attached to each product in our case study has been obtained by
a BERT model [12] pre-trained on English Wikipedia and by a ResNet512 [13]
pre-trained on ImageNet [14], respectively.

3 Item Compatibility Graph

Our study considers two novel industrial proprietary datasets provided by
H&M, where each node is associated with a fashion item and the presence
of an edge between two nodes denotes style compatibility between the items.
These graphs have been compiled from a list of pairwise fashion item compati-
bility statements compiled by H&M domain experts. This information has been
used to build two separate graphs, one for Men and one for Women clothing.
Both contain a large number of products, represented by an image, text descrip-
tion, colour, and other tabular data. These fashion graphs have been assembled
specifically for this work and this is the first graph-based predictive analysis be-
ing performed on such data. We complement our analysis on proprietary data
with a publicly available dataset, the Computers network [15], with structural
characteristics that are akin to those of our industrial use case. All networks
have been represented using the Open Graph Benchmark (OGB) [16] format,
and the relevant properties of the aforementioned datasets are given in Table 1.
The challenging aspect shared by all datasets is the high level of edge sparsity,
nearing 100%, and the nontrivial proportion of disconnected nodes (i.e. with
zero degree). The latter is particularly true for the fashion data. This is the
key motivational aspect for our approach, as we would like to be able to enrich
the graph edges by inductive learning before fitting the target transductive task
to the data. With respect to this, Table 1 already reports an anticipation of
the results of the inductive enrichment of the graph (marked in bold). One can
clearly see a considerable drop in disconnected nodes, with a minor change to the
edge sparsity. From a model selection perspective, we split differently the graph
adjacency matrix A depending on the task to be performed (inductive or trans-
ductive link prediction). In particular, for the inductive link prediction task, we
needed to assure that one or both nodes, seen during the training process are not
seen during the evaluation process. For this reason, A is split on a node basis.
For the transductive task, instead, we partition the network on an edge basis.
It is important to mention that negative training edges are sampled uniformly
during the training phase, while the validation ones are sampled in advance and
are kept fixed for the duration of the model assessment. After the final inductive
model is chosen, we set different thresholds for the maximum node degree and a
link existence probability. In the case of graph for Men, graph for Women and
Computers [15], the thresholds for maximum node degree are set to 5, 2, and
20, respectively, while the thresholds for the probability of link existence are set
to 0.85, 0.99 and 0.60, respectively.
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Graphs’ properties Men Men* Women Women* Computers Computers*

Number of nodes 22912 22912 57447 57447 13752 13752

Number of zero-degree nodes 5420 16 11720 2811 281 0

Percentage of zero degree nodes 23.65% 0.06% 20.40% 4.89% 2.04% 0.00%

Number of edges 290514 4265230 642090 4013554 491722 3461572

Sparsity 99.94% 99.18% 99.98% 99.87% 99.73% 98.16%

Table 1: Dataset summarization: with * we denote enriched graphs.

4 Experiments & Results

The data used for training the baselines and our proposed method are images
and text descriptions of H&M’s assortments. For each dataset, configuration,
and task, hyperparameter selection has been performed by using Optuna [17],
an hyperparameter optimization software framework. For the inductive link pre-
diction task, we trained DEAL-based [8] models with different architectures and
configurations. The results are reported in Table 2. In particular, we consider
two attribute-oriented encoder mechanisms: an MLP and a trainable Embed-
ding layer [18]. The performances for both inductive (Table 2) and transductive
(Table 3) link prediction are highly improved when using visual or concatena-
tion of visual and textual node features. The best performances on the graph
for Men and graph for Women achieved DEALMLP, while DEALEMB performed
better in the case of Computers [15] for two out of three metrics. The best
performing configuration for each graph is used to perform graph enrichment for
the successive transductive analysis.

Model

Accuracy ROC - AUC AP

Text Image Text+Image Text Image Text+Image Text Image Text+Image

M
e
n DEALEMB 0.6432 0.7177 0.7287 0.7117 0.8010 0.8208 0.6966 0.7463 0.7746

DEALMLP 0.7083 0.7432 0.7551 0.7728 0.7999 0.8370 0.7459 0.7438 0.7987

W
o
m
e
n

DEALEMB 0.6573 0.7258 0.7361 0.7349 0.8183 0.8413 0.7231 0.7812 0.8088

DEALMLP 0.7276 0.7718 0.7851 0.8064 0.8402 0.8622 0.7750 0.7963 0.8223

C
o
m
p
.

DEALEMB 0.7425 0.9072 0.9019

DEALMLP 0.7606 0.8808 0.8624

Table 2: The results of inductive link prediction on Graph For Men, Women,
and Computers.

In Table 3 we can see how the enriched graph improves substantially the link
prediction performance for all three different types of GNN considered (SAGE,
GAT, and GCN), with respect to the metrics we considered, namely Accuracy,
Receiver Operating Characteristic (ROC) Area Under Curve (AUC) and Aver-
age Precision (AP). This improvement in performance may be interpreted by
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the fact that the enrichment process effectively completes the original graph,
making the patterns more regular, general, and therefore easier to learn.

Model

Accuracy ROC - AUC AP

Text Image Text + Image Text Image Text + Image Text Image Text + Image

M
e
n

SAGE 0.9133 0.9256 0.9323 0.9646 0.9710 0.9742 0.9563 0.9649 0.9674

SAGE* 0.9706 0.9740 0.9736 0.9932 0.9939 0.9944 0.9900 0.9907 0.9915

GCN 0.9180 0.9206 0.9323 0.9687 0.9718 0.9757 0.9649 0.9682 0.9737

GCN* 0.9704 0.9751 0.9772 0.9939 0.9951 0.9956 0.9923 0.9935 0.9945

GAT 0.9024 0.9133 0.9154 0.9565 0.9658 0.9649 0.9483 0.9604 0.9588

GAT* 0.9720 0.9715 0.9750 0.9940 0.9934 0.9941 0.9913 0.9889 0.9907

W
o
m
e
n

SAGE 0.9214 0.9402 0.9392 0.9678 0.9788 0.9790 0.9627 0.9750 0.9756

SAGE* 0.9700 0.9717 0.9711 0.9941 0.9946 0.9950 0.9932 0.9929 0.9943

GCN 0.9170 0.9401 0.9462 0.9695 0.9813 0.9839 0.9683 0.9807 0.9834

GCN* 0.9690 0.9722 0.9745 0.9932 0.9952 0.9951 0.9933 0.9947 0.9953

GAT 0.9238 0.9360 0.9344 0.9695 0.9759 0.9752 0.9703 0.9735 0.9728

GAT* 0.9722 0.9756 0.9748 0.9935 0.9946 0.9948 0.9916 0.9921 0.9929

C
o
m
p
u
te
rs

SAGE 0.9457 0.9832 0.9788

SAGE* 0.9692 0.9935 0.9904

GCN 0.9421 0.9835 0.9818

GCN* 0.9647 0.9928 0.9910

GAT 0.9364 0.9770 0.9706

GAT* 0.9669 0.9919 0.9864

Table 3: The results of transductive link prediction on Graph For Men, Women,
and Computers. With * are denoted the results of the models after performing
the graph enrichment.

5 Conclusions

We proposed an inductive learning approach for completing sparse graphs
describing item compatibility information, and we have applied our method to
both a publicly available benchmark as well as to a novel industrial use case
based on the product assortment of a global fashion retailer. The proposed
approach consists of two steps. First, we learn an inductive learning model that
we use to generate new links for those nodes of the graph that are disconnected
or sparsely connected. We then train a transductive model using the enriched
graph, showing that we achieve increased link prediction performance. Our
hypothesis is that the inductive learning model manages to learn the patterns of
the connected nodes and transfer them to the sparsely connected nodes, making
the structure of the graph more regular. This makes sense since we know from
the process generating the connections in the graph, which is manual and labor
intensive, that many possible connections are missing in the original graph.

Future works will study more thoroughly the graph enrichment step, that
in this work has been carried out with a very simple methodology, by selecting
the nodes with a maximum number of neighbours and a threshold for the in-
ductive probability prediction. A more principled approach could give further
performance improvements.
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