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Abstract. We propose to use input convex neural networks (ICNN)
to build convex approximations of non-convex feasible sets of optimiza-
tion problems, in the form of a set of linear equalities and inequalities in
a lifted space. Our approach may be tailored to yield both inner- and
outer- approximations, or to maximize its accuracy in regions closer to the
minimum of a given objective function. We illustrate the method on two-
dimensional toy problems and motivate it by various instances of reliability
management problems of large-scale electric power systems.

1 Introduction

Mathematical optimization is a very rich framework allowing us to model lots of
practical problems. The tractability of an optimization problem depends on the
properties of the objective function and the feasible set. Non-convex problems
are often intractable whereas convex problems are tractable. In particular, linear
optimization, which is a subclass of convex problems, is a mature field where
problems with thousands of variables and constraints can be routinely solved
with efficient and reliable solvers [1].

In this paper, we propose to develop machine learning approaches that would
allow us to automatically build convex approximations of non-linear and/or non-
convex feasible domains in the form of a set of linear (and thus convex) con-
straints, in order to exploit the extremely efficient methods and solvers already
available for linear programs. If the obtained linear approximation of the feasible
set is an inner approximation (i.e. all the solutions belonging to this approxima-
tion are feasible), it would allow us to generate feasible solutions and, in the case
of a convex objective function, upper bounds of the minimal value of the original
problem. If it is an outer approximation (i.e. the approximation contains all the
feasible solutions of the original problem) it would provide lower bounds, also
in the case of a convex objective function. Note that this constraint on the ob-
jective function is not restrictive because generically, any optimization problem
minx f(x) s.t. x ∈ D may be rewritten as min(x,z) z s.t. z ≥ f(x), x ∈ D so that
any non-linear and/or non-convex optimization problem may be reduced to the
minimization of a linear (thus convex) function subject to a possibly non-convex
feasible set.

The ICNN [2] is a neural network with constraints on its parameters and
activation functions implying that the learnt input-output function h(x, θ) is a
convex function of the inputs x. While this method was originally proposed in a
regression context (e.g. to build convex approximations of objective functions of
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optimization problems), we propose to use it in a classification setting in order
to build convex approximations of feasible sets of optimization problems. Note
that this approach can also be of interest in the context of convex feasible sets.
Using an ICNN would indeed allow us to enforce the convexity property when
using supervised learning to approximate a convex feasible set.

The rest of this paper is organized as follows. Section 2 presents the main
idea, i.e. the feed-forward ICNN model and our proposed adaptation to repre-
sent and learn convex approximations of a feasible domain, and how this learnt
convex approximation can be used effectively in an optimization problem if the
ICNN architecture is using piecewise linear activation functions such as ReLU or
leaky-ReLU. Section 3 presents some illustrative experiments, section 4 discusses
related works, and section 5 possible real-world applications and directions for
future work. We provide a “supplementary materials” document [3], which gives
further details about simulation experiments and mathematical proofs.

2 ICNNs for convex classification and optimization

We consider feed-forward networks as shown in Fig. 1, where x ∈ R
n denotes

the vector of inputs, θ = {W z
i ,W

x
i , bi}i=0,...,k−1 the set of parameters, and gi the

activation function used in the ith layer. The relationship between the inputs
and the outputs of layer i of such a model is thus recursively given by:

zi+1 = gi(W
z
i × zi +W x

i × x+ bi) for i = 0, ..., k − 1,

with z0 = 0 and (the outputs) h(x, θ) = zk.

Fig. 1: Representation of the layers of an ICNN with two outputs h0 and h1.
The weights W z, colored in green, are constrained to be non-negative.

Notice that compared to a classical feed-forward neural network, pass-through
layers connecting directly the input vector x to each layer have been added to
increase the representation power of these networks. In the ICNN model [2],
the weights W z

i for i = 1, ..., k − 1 are constrained to be non-negative and the
activation functions gi are constrained to be convex and non-decreasing. These
two conditions are sufficient to guarantee that the activations zi of each layer
and hence the outputs h(x, θ) are convex functions of the input vector x. In
the rest of this paper we will use (convex and non-decreasing) piecewise linear
activation functions gi (such as ReLU or leaky-ReLU).
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2.1 Convex set representation by an ICNN with two outputs

Among several possibilities, we decided to use an ICNN with two (scalar) outputs
h0 and h1 to create a binary classifier, where an input is associated to the target
class 0 if g(x, θ) = h1(x, θ)− h0(x, θ) ≤ 0.

With this choice, it is clear that the set D̃ of elements classified in class 0
by the ICNN is a convex subset of Rn, as soon as g(x, θ) is a convex function
of x. In order to ensure this, we use identity activation functions for the output
layer (gk−1(x) = x) and impose an additional constraint on the parameter vec-
tors W z,0

k−1 and W z,1
k−1 feeding the output layer of the ICNN: they should satisfy

component-wise the inequality

W z,1
k−1 ≥ W z,0

k−1. (1)

Notice that if we feed such a network with an extended vector xe = (x,−x) (or,
more generally xe = Ax), the input-output relationship remains convex in x.

2.2 Building a family of nested convex sets

To build a convex approximation of a set D ⊂ R
n, we assume that we have (or

that we can build) a dataset of input-output pairs D̂ = {xi, yi}ni=1, where each
input xi describes the coordinates of a point in R

n and where the corresponding
output yi = 0 if the point xi belongs to D and yi = 1 otherwise.

We propose to learn from the dataset D̂ the parameters θ of an ICNN classifier
which has as inputs xe = (x,−x), and by using the cross-entropy loss

loss(θ, x, y) = − log

(
exp(hy(θ, x))

exp(h0(θ, x)) + exp(h1(θ, x))

)
.

After training, we consider the whole family of (convex) sets

D̃λ = {x ∈ R
n|g(x, θ) = h1(x, θ)− h0(x, θ) ≤ λ},

with λ ∈ R, as candidate convex approximations of D.

2.3 Exploitation in the context of optimization

A convex ICNN classifier can be used to approximate the feasible set D of an
optimization problem. If the objective f(x) is convex, the approximated problem

min
x∈D̃λ

f(x), (2)

is then also convex. Furthermore, if the objective function f(x) is (piecewise) lin-
ear (and convex), and if all the activation functions gi used in the ICNN are piece-
wise linear, convex, and non-decreasing functions (such asReLU(x) = max(0, x),
or leaky−ReLU(x) = max(0.01x, x)), we can show that the resulting optimiza-
tion problem reduces to a linear program (see section 2 of the supplementary
material [3]). In general, we can use convex ICNN classifiers to approximate in a
linear fashion any non-convex part of the constraints and/or objective function
of any optimization problem. Solving (2) for an increasing sequence of λ values,
would yield a decreasing sequence of optimal values.
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3 Illustrations

We consider some (convex and non-convex) toy problems where D ⊂ R
2. For

each one, we used a dataset of 20,000 labelled points. These points were sampled
uniformly in a square of length 10 centered at (0, 0); 16,000 were used to train
and 4,000 to test. We show results with ICNNs of 6 hidden layers and 50 neurons
per layer, and ReLU activations. The ADAM optimizer [4] with a learning rate of
10−3 was used to update the network parameters at each epoch. To enforce the
non negativity condition for the weightsW z, each negative element of the update
computed with the optimizer is set to 0 before the next iteration. Similarly, to
enforce the convexity constraint on the last layer, we set to 0 each pair of weights
for which the convexity condition (1) is not met. Before training, the inputs are
standardized based on their minimum and maximum values in the training set
to be in the range [0, 1].

Fig. 2 shows four regions D and their approximation D̃0 with an ICNN.
One can see that the convex region is well approximated by the ICNN. For the
non-convex domains, the ICNN provides a convex approximation D̃0 of D.

Fig. 2: The set D is represented in red and the approximated set D̃0 in blue.

(a) λ = −1.75 (b) λ = 0 (c) λ = 2.7

Fig. 3: Effect of λ on the D̃λ set.

It is possible to play with the size of the approximated region by modifying
the threshold λ in the definition D̃λ = {x ∈ R

n|h1(x)−h0(x) ≤ λ}. Fig. 3 shows
the approximated region D̃λ for various λ. We see that increasing the threshold
allows us to find outer approximations of D and decreasing the threshold allows
us to find inner approximations. With this method, the model needs only to be
learnt once and then the threshold can be manually adjusted to obtain inner or
outer approximations.
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3.1 Considering an objective function when learning the ICNN

In an optimization context, it is of interest to guide the learning of the ICNN in
order to improve the approximation close to the minimum values of the objective
function. For that, one possibility is to exploit the objective function f(x) in
the definition of the loss function used when training the classifier, by giving
less weight to elements of the training set farther from the optimum, and thus
induce the learnt approximation D̃0 to be tighter near to the sought optimum.
More details about this procedure can be found in section 3 of the supplementary
materials companion document [3].

Fig. 4 shows decision boundaries thus obtained for different objective func-
tions. We see that the approximation is indeed tighter close to the unconstrained
optimum and actually approaches the constrained optimum very well.

(a) f(x) = (x1 + 3.5)2 + (x2 − 2)2 (b) f(x) = (x1)2 + (x2 − 2.5)2

Fig. 4: Left parts of (a) and (b): training weights wy,f (blue/dark blue: wy,f = 1;

white: wy,f = 0.2). Right parts: resulting D̃0, where red and black crosses
indicate respectively the unconstrained and the constrained minimum of f(x).

4 Related works

This work is not the first one to exploit the particular properties of ICNNs in
the context of optimization problems. ICNNs have been used for complex phys-
ical systems control [5, 6, 7], to learn the objective function of an optimization
problem and/or its constraints. In these papers, the considered case-studies
are convex. Using ICNNs is therefore a way to exploit the prior knowledge of
convexity while offering tractable control methods.

Similar to our method, ICNNs are used [8] in the context of non-convex
optimization. The authors developed an algorithm called the Convex Differ-
ence Neural Network that expresses the learnt function as a difference of convex
functions, so that they can use Difference of Convex programming techniques in
problems where their algorithm has been used to learn objective functions and
constraints of optimization problems.

Compared to this research, our method learns convex (actually linear) ap-
proximations of non-convex optimization problems, at the cost of possibly larger
approximation errors but with the advantage that much more efficient and scal-
able optimization solvers can be used.
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5 Conclusions and future works

We propose to use ICNNs to learn convex approximations of feasible sets of
general optimization problems. This approximation reduces to a series of linear
inequalities when ReLU activation functions are used, and we showed how the
model may yield outer or inner approximations and/or tight approximations in
regions near the optimum of a given objective function.

The next step is to test this method on practical non-convex optimization
problems. Depending on the context in which this method could be applied, the
found solution could be used directly or as a warm-start point for solving the
non-convex problem. It can also be used to compute lower or upper bounds of
the optimal solution when the learnt approximation is built so as to obtain an
outer or an inner approximation of the feasible region.

Another direction of research is to consider the case where the feasible set D
to be approximated depends on some external parameters ξ. In electric power
systems, for instance, the secure region of operation depends on load and renew-
able generation levels and so ξ could represent the realizations of these exogenous
uncertainties. One could then learn a convex approximation of the parameter-
ized domain D(ξ) with an ICNN that would have both x and ξ as inputs while
being constrained to be convex only in x (in [2] such models are called Partially
Input Convex NNs). If the ICNN is able to capture the relationship between the
shape of the feasible region and the parameters ξ, then it could largely speed up
the solving of this type of problems with varying ξ values, once it is learnt.

A further direction of research would consider distributed optimization prob-
lems, where the proposed approach could be used to enable various agents to
learn and exchange convex approximations of their subsets of constraints and
their sub-objectives. This would be of extremely high relevance to the field of
multi-area electric power systems planning and operation.
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