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Abstract. Bayesian optimization (BO) is a type of black-box method
used to optimize a costly objective function for which we have no access
to derivatives. In practice, it is frequent that a series of similar problems
has to be solved, with the problem data changing moderately between in-
stances. We investigate a transfer learning approach based on BO that
reuses information from a previous configuration in order to speed up sub-
sequent optimizations. Our approach involves learning the noise variance
to apply to the function values of the previous configuration and adapting
the exploration-exploitation trade-off of the acquisition function from the
previous configuration. We apply those ideas to the calibration of a beam
line in proton therapy where the goal is to find magnet currents to obtain a
desired shape for the beam of protons, and for which the calibration has to
be repeated for several configurations. We show that reusing information
from a previous configuration allows a reduction in the number of itera-
tions by more than 80%, and that using BO is superior to the conventional
Nelder-Mead algorithm for black box optimization and transfer learning.

1 Introduction

Solving a black box optimization problem without access to the gradient of the
objective function can only be done in two ways. Either the gradient is estimated
numerically and gradient-based algorithms can be used, or a derivative-free op-
timization routine is used. The former requires to compute a gradient at every
step, which increases the number of function evaluations required. For costly
evaluations of the objective function, this is a strong caveat. In this paper, we
focus on Bayesian optimization, a derivative-free and global optimization routine
[1] presented in section 2. For the sake of comparison with our approach, we also
implement the Nelder-Mead algorithm, a conventional and simple derivative-free
algorithm based on the concept of using the simplex as the iterate [2].

Transfer learning is usually described as transferring information from a re-
lated domain to improve the learner’s capability, or because of insufficient data
available for the actual learning task [3]. In this paper however, we consider
that the transfer of information is from the same domain but from a different
configuration. Transfer of information in the context of Bayesian optimization
has been studied in the literature for tuning the hyperparameters of machine
learning algorithms. In [4], the authors used a Gaussian process (GP) to learn a
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surrogate-based ranking function to transfer knowledge across tasks. In [5], the
authors transfer knowledge from past experiments using deviations from the pre-
vious dataset mean via a common surrogate function. More recently, in [6], the
authors introduced a noise variance to model the relatedness between datasets
and estimate it via an inverse gamma distribution. In this paper, we propose a
similar idea as in [6] but we estimate the noise by maximizing the log-marginal
likelihood of the GP model. Moreover, we use mutual information [7] as the
acquisition function of the BO and reuse the exploration-exploitation trade-off
of the initial task to optimize the second, as explained in Section 3. In Section 4,
we apply our method to the calibration of a beam line in proton therapy (PT).

2 Bayesian optimization

Bayesian optimization is a popular approach for solving black-box optimization
problems. It is best-suited for problems of moderate dimension, and is able to
handle noisy function evaluations [8]. The method works in two phases: first it
builds a surrogate model of the objective function and quantifies the uncertainty
in that surrogate via a Gaussian process regression. Then, it suggests the next
point to evaluate by maximizing an acquisition function.

Gaussian process Gaussian processes (GP) are a form of non-parametric method
that infer a distribution over functions by defining a prior [9]. After observing
data points D = (xi, yi)

N
i=1, it computes a posterior over functions. It relies on

the property that a set of N points xi induces a multivariate Gaussian distri-
bution on RN . Formally, a Gaussian process is a random process where a point
xi is assigned a random variable f(xi) and where the joint distribution of those
variables p(f(x1), ..., f(xN )) is Gaussian, i.e. p(f |x1, ...,xN ) = N (0,K) with

f = [f(x1), ..., f(xN )]
T

and K is a N × N kernel matrix with entries given by
the kernel function (or covariance function) Kij = κ(xi,xj), defining the shape
of the function. Note that we consider the GP with a zero-mean function. This
is common practice and not necessarily a limitation, since the mean of the pos-
terior process is not confined to be zero [9]. To predict new values f∗ at certain
inputs x∗, we compute a posterior distribution based on the partitioning[

f
f∗

]
∼ N

(
0,

[
K K∗
KT

∗ K∗∗

])
(1)

where K∗ = κ(x,x∗) is a N × N∗ matrix and K∗∗ = κ(x∗,x∗) is a N∗ × N∗
matrix. Using rules for conditional probability on Gaussian distribution (see [9],
section A.2 for details), we can compute the posterior distribution:

p(f∗|X∗,X, f) = N (f∗|µ∗,Σ∗) with µ∗ = KT
∗ K−1f and Σ∗ = K∗∗−KT

∗ K−1K∗

The Gaussian and the Matern kernel are commonly used, the latter being a
generalization of the Gaussian kernel to relax its infinitely differentiable property
[10]. We use a particular parametrization of the kernel that is twice differentiable

κ(xi,xj) = σ2
f

(
1 +

√
5

l
‖xi − xj‖+

5

3l
‖xi − xj‖2

)
exp

(
−
√

5

l
‖xi − xj‖

)
(2)
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where σ2
f and l are parameters to tune. Those hyperparameters θ = (σ2

f , l) can
be estimated optimally by maximizing the log marginal likelihood (LML) of the
GP model [9], for which an analytical formulation exists:

log p(y|X,θ) = logN (y|0,Ky,θ) = −1

2
yTK−1

n (θ)y− 1

2
log
∣∣Kn(θ)

∣∣−N
2

log(2π)

(3)
We can then compute the gradient of LML with respect to θ and use an off-
the-shelf optimization solver to obtain the optimal kernel parameters. In this
paper, we use the L-BFGS-B algorithm [11] with several restarts due to the non-
convexity of the problem, to perform all log-likelihood maximization. It is also
possible to build a Gaussian process based on noisy evaluations (y|f ∼ N (f , σ2

nI)
where y are the observations) by defining the covariance matrix as Kn = K+σ2

nI
where σ2

n can be optimally retrieved by maximizing LML as well.

Bayesian optimization The next step after building a surrogate model of the
objective function with GP is determining where to sample next by maximizing
an acquisition function a. The acquisition function trades off between explo-
ration of regions with high uncertainty and exploitation of regions with more
knowledge. Formally, the next sample to evaluate xt+1 results from xt+1 =
arg maxx a(x|D1:t) with D1:t, the dataset containing the t samples previously
evaluated and used to build the surrogate model. The acquisition function we
use in this paper is the mutual information, which was shown to surpass other
common functions on several datasets [7]. It can be formulated as

aMI(x) = µ(x)−
√
α
(√

γ̂(t)−
√
γ̂(t− 1)

)
(4)

in the context of minimization, with µ(x) the mean at sample x, representing
the exploitation part, and the second term representing the exploration part at
x, where γ̂(t) =

∑t
i=1 σ

2
i (x) with σ2

i (x) the variance of the ith GP at x. This
second term is empirically controlled by the amount of exploration that has been
already done, that is, the more the algorithm has gathered information on f , the
more it will focus on the optimum [7]. The parameter α controls the trade-off
between precision and confidence.

3 Transfer learning approach

In this paper, we consider that an optimization problem is first solved in a source
configuration with dataset DS of size NS . Then we wish to solve it again in a
target configuration DT of size NT applying a transfer learning approach. The
approach for transfer learning we propose in this paper is two-fold. First, we
infer the noise variance of DS with respect to DT . We define σ2

nS
to be the noise

variance of the source configuration with respect to the target configuration,
and σ2

nT
to be the noise on the observations of the target configuration. We can

take into account those noise variances directly in the GP by reformulating the
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covariance matrix K as

Kn = K + σ2
nS

 INS
0NS×NT

0NT×NS
0NS×NT

+ σ2
nT

0NS×NS
0NS×NT

0NT×NS
INT

 (5)

The optimal noise variances can be estimated in the same way as the kernel hy-
perparameters, i.e. by maximizing the LML with respect to σ2

nS
and σ2

nT
. Note

that the approach can easily be extended to take into account more datasets
by seeking different noise variances. However, the computation of the opti-
mal parameters can quickly become time-consuming. A similar approach was
undertaken in [6], in which the noise variance was estimated via an inverse
gamma distribution instead of maximizing LML. We show in section 4, that
the inverse gamma approach performs worse for our specific application. In
this paper, we assume that the noise on the observations is fixed and very
low. The purpose is thus to seek the optimal σ2

nS
for transfer learning, i.e.

σnS
= arg maxσnS

log p(y|X,θ).

The second ingredient in our approach is based on a modified quantity γ̂T to em-
pirically control the trade-off between exploration and exploitation of the source
configuration. We define

γ̂T (t) =
t∑

j=1

σ2
Tj

(xj) + C

NS∑
i=1

σ2
Si

(xi) (6)

where σ2
Tj

and σ2
Si

are the variance of the jth GP of the target and ith GP of the

source respectively, and C ∈ [0, 1] to be a weight that we choose in this paper
to be either C = 1 or C = 0 (although one could also adjust it w.r.t. σ2

nS
).

4 Application to the calibration of a beam line in PT

We apply the approach developed in Section 3 to optimize magnet currents in a
proton therapy beam line. Proton therapy (PT) is a type of radiotherapy that
uses a beam of protons to irradiate cancerous tissues as opposed to a photon
beam (X-rays) in conventional radiotherapy. A proton therapy system consists
of a particle accelerator that accelerates protons, a beam line that transport the
beam of protons to the treatment room and a delivery system responsible to irra-
diate a patient. Calibrating the magnet’s currents in the beam line is necessary
to fulfill several constraints on the characteristics of the beam of protons. The
problem must be solved for several configurations, i.e. several beam ranges and
gantry angles. We suppose the beam ranges to be independent problems, and
we apply for each of them the transfer learning from one angle to another using
the approach developed in section 3 to speed up this calibration process. The
process is simulated via a fast tracking code for beam transport and simulation
of beam-matter interactions in hadron therapy beamlines [12]. As input, we
provide a list of magnet currents and receive a 2D dose distribution as output.
An objective function translates this dose distribution into a scalar metric quan-
tifying its correctness. The optimization stops when constraints on the beam
are met, meaning that the correctness metric fell below some threshold, or when
a maximum of 250 iterations has been reached.
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Test with first angle First, we solve the optimization problem for the initial
configuration, in our case a specific angle (θS = 0◦), for 10 beam ranges with-
out transfer learning. We compare BO with the mutual information (BO-MI)
acquisition function against the conventional lower confidence bound (BO-LCB)
and the Nelder-Mead algorithm in the first part of Table 1. Experiments are
restarted 20 times to account for the random nature of the BO. We observe that
optimization of higher ranges is harder and the Nelder-Mead algorithm is not
capable to find a solution satisfying the constraints in the maximal 250 iterations
allowed. Between the two acquisition functions for the Bayesian optimization,
MI performs better in almost all cases.

Test a second angle with transfer learning Next, we solve the calibration prob-
lem for another configuration (θT = 90◦) by reusing the currents-objective values
pairs of the source configuration for each beam range. We also report a baseline
without transfer learning for this new angle (second part of Table 1). We notice
that the problem with this second angle seems easier for the Nelder-Mead algo-
rithm, but is still failing for the first range (4.1) while BO-MI performs equally
well on average and better than LCB. In the third part of the table, we com-
pare the different approaches for transfer learning. We compare our proposed
approach (σMLE , C = 1 in Table 1) with the approach from [6], i.e. by es-
timating the noise variance with an inverse gamma distribution, and with the
Nelder-Mead algorithm where the initial simplex is built with the last values of
the source configuration (the last N + 1 input-output pairs of the BO-MI for
θS = 0). From those results, we first observe that our approach of estimating
σ2
nS

= σ2
MLE by maximizing the LML of the GP and reusing the γ̂ parameter

of the MI acquisition function (C = 1) helps to reduce the number of iterations
needed for the target configuration by more than 80% (ratio of the means). Sec-
ond, it performs better than Nelder-Mead and the approach from [6]. Even if we
modify the approach from [6] to select the same acquisition function as our ap-
proach (MI) and reuse the gamma parameter of the source configuration, we get
worse results than σMLE (although better than the original method). This may
be due to a poor prior candidate for the inverse gamma distribution. We also
tested a few variations of our approach (σMLE). If we choose not to reuse the γ̂
parameter of the MI acquisition function (i.e. C = 0), the number of iterations
increases for all ranges. Moreover, if we arbitrarily fix the noise variance σ = 0.1
or σ = 10−5 instead of estimating it, the number of iterations also increases.

5 Conclusion

We developed a transfer learning framework for Bayesian optimization based on
the mutual information acquisition function that estimates the noise variance of
a source task by maximizing the marginal likelihood of the Gaussian process and
by reusing the exploration-exploitation trade-off of the source configuration. We
showed that it drastically reduces the number of iterations needed to calibrate a
proton therapy beam line and outperforms existing transfer learning approaches.
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Method \ range 4.1 6 9 12 15 18 21 24 27 30 Mean
Source angle θS = 0◦

BO-MI 85 47 32 18 32 47 58 69 114 108 61
BO-LCB 108 97 76 59 52 62 53 64 251 163 98.65

Nelder-Mead 33 7 12 42 251 251 251 251 251 251 160
Target angle θT = 90◦ without reusing information from θS

BO-MI 102 64 22 16 28 60 40 65 97 96 59
BO-LCB 122 103 78 38 54 52 74 73 146 171 91.35

Nelder-Mead 251 45 16 11 46 57 52 59 56 56 64.9
Target angle θT = 90◦ reusing information from θS with BO-MI
σMLE , C = 1 21 12 16 5 6 5 4 3 5 16 9.3
Nelder-Mead 24 28 11 20 9 10 10 8 6 9 13.5
Inv. gamma 194 122 74 63 77 97 68 143 194 121 115.3

Inv. gamma, MI 111 38 43 25 33 48 57 73 76 103 60.7
σMLE , C = 0 27 20 31 8 13 6 8 6 5 17 14.1

σ = 10−5, C = 1 66 24 18 5 8 4 4 5 5 11 15
σ = 0.1, C = 1 79 53 32 27 39 30 52 64 52 50 47.8

Table 1: Median number of iterations to reach an acceptable solution for different
transfer learning scenarios. Columns are different beam ranges (independent problems).
The first part of the table refers to the source configuration (θS = 0◦), the second part
refers to the target configuration (θT = 90◦) without transfer learning and the third
part refers to the target configuration (θT = 90◦) and reuses the input-output-pairs
computed by the best algorithm (BO-MI) of the first configuration (θS = 0◦).

References

[1] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian
methods for seeking the extremum. Towards global optimization, 2(117-129):2, 1978.

[2] John A Nelder and Roger Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965.

[3] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning.
Journal of Big data, 3(1):1–40, 2016.
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