ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Robust Malware Classification via Deep Graph
Networks on Call Graph Topologies

Federico Errica', Giacomo Iadarola®, Fabio Martinelli?,
Francesco Mercaldo®® and Alessio Micheli!

1- University of Pisa, Department of Computer Science
2- Institute of Informatics and Telematics, National Research Council of Italy

3- University of Molise, Department of Medicine and Health Sciences

Abstract. We propose a malware classification system that is shown to
be robust to some common intra-procedural obfuscation techniques. In-
deed, by training the Contextual Graph Markov Model on the call graph
representation of a program, we classify it using only topological informa-
tion, which is unaffected by such obfuscations. In particular, we show that
the structure of the call graph is sufficient to achieve good accuracy on a
multi-class classification benchmark.

1 Introduction

Detecting malicious behavior using static analysis is one fundamental process
to protect devices, networks and users’ personal data. By looking at how the
program is developed, the goal is to find known patterns — textual or statistical
— that classify a program as either trusted or belonging to a specific malware
family. As anti-malware companies become better at finding known patterns, so
do malware writers that rely on obfuscation techniques to elude common pattern
checks. There are two main categories of obfuscation: intra-procedural, i.e., it
modifies procedural code without changing the interaction with the rest of the
program, or inter-procedural, i.e., it alters the structure of the program by also
adding call or invoke statements. While the latter is certainly more difficult to
detect, it is also much more delicate to use as some mechanisms (e.g., call-return
and parameter passing) may rely on information known only at run-time and can
introduce concurrency problems. Instead, intra-procedural techniques are widely
used and suffice to fool a number of static code analysis tools [1]. Recent works
test their approaches on the most common obfuscation techniques [2] or group
them by their magnitude of edits on the code [3]. In this context, we investigate
the problem of malware classification from a machine learning perspective, where
the program is represented as a Call Graph (CG), i.e., a graph where nodes are
procedures and edges denote calls to other procedures. Differently from the
literature, we consider obfuscation techniques based on their influence on the
CG topology.

Many malware detection tasks working on CGs exploit graph-signature, sim-
ilarity algorithms and graph-kernels [4, 5, 6]. In conjunction with formal

This research was partially supported by TAILOR, a project funded by EU Horizon 2020
research and innovation programme under GA No 952215 and by MIUR - SecureOpenNets,
EU SPARTA, CyberSANE and E-CORRIDOR projects.

369

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

%0
)

Fig. 1: Given an Android Application Package (APK) w.l.o.g, we apply static
analysis to construct a CG, where nodes represent methods and arrows denote
how methods are intertwined. For our purposes, the sole node feature we use
is the out-degree of each node. Then, the CGMM model transforms the input
graph into an embedding that is used for the final classification.

methods, these approaches achieve excellent accuracy, but the analysis is time-
consuming and requires domain-level expertise for the temporal logic formulae
generation [7]. Instead, most machine learning approaches are adaptive, gener-
ally more efficient, and rely on static analysis features included in the graphs,
such as opcodes frequencies [8] and control/data dependencies [9]

In this paper, we propose a malware family classification method based solely
on the CG topology. This way, it is possible to show that the approach is
intrinsically robust to intra-procedural obfuscation techniques. To automatically
extract patterns from the CG, we rely on Deep Graph Networks (DGNs); for
space reasons, we refer the reader to recent surveys on the topic [10, 11, 12] . In
particular, we exploit the Contextual Graph Markov Model (CGMM) [13, 14] to
construct graph embeddings that are then fed to a standard machine learning
classifier. Note that, while methods exist to certify robustness of DGNs to node
perturbations [15], our approach does not need such certificates as it focuses on
the structure, i.e., it is robust to any node content perturbation.

2 Methodology

We sketch the overall methodology in Figure 1. For the purposes of this work,
we shall define a graph as a tuple g = (V, £, X') where V is the set of entities (or
nodes), £ is the set of directed edges connecting entities, and X is the set of node
features. The feature vector of a node u is referred to with the symbol x,, € X.
Finally, we define the neighborhood of a node u as N, = {(v,u) | v € V}.

2.1 Embedding Generation and Classifier

Assuming we have a CG dataset to learn from, we employ CGMM to generate
a graph embedding that encodes each CG structural information. To do so, at
each layer ¢, CGMM maximises the likelihood of each graph g conditioned on

370

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

each node neighbors’ posteriors qf\Ful computed at the previous layer £ — 1:

C
P(g| {ay;, lueVh) =[] D PxulQu=40P(Qu = ildy")

ueV i=1

C
PQu=ildlg) ~ e S P@=ila=1) 3 at7'0)
J

UENu

where (), is the latent categorical variable with C states introduced by marginal-
ization, P(Q = i|lg = j) is the probability of transitioning from a neighboring
state j to i, and ¢“~1(j) refers to the j-th component of the posterior of v com-
puted at layer ¢ — 1. In this work, x, corresponds to the out-degree of node u
as done in [14], and therefore the emission distribution P(x,|Q. = i) will be a
univariate Gaussian. Using the degree feature is just one the possible choices.
It was shown that this unsupervised training produces useful representations
for the subsequent downstream tasks [14]; also, it can significantly accelerate the
model selection phase, since graph embeddings need be computed only once and
the downstream classifier works on simple vectors. The final graph embedding
is the concatenation of the aggregated node posteriors produced at each layer.

3 Experiments

We now describe how we converted a set of Android applications, i.e., .apk files
in this work, into a CG dataset; nevertheless, provided a static analysis tool is
available, it is straightforward to apply this methodology to other environments
as well. First, of all, each .apk file is decompressed and the Java bytecode is
decompiled into Jimple, an intermediate representation language, using the Soot
Framework [16]. During decompilation, the code is analyzed to generate a CG?!,
where nodes represent methods, i.e., a procedure or function construct, and di-
rected edges denote calls from caller to called nodes, i.e., when an invoke or call
statement is present in the method. Our analysis only considers methods in the
application packages, thus discarding calls to library functions or external pack-
ages. Notably, the generated CGs do not contain information about the methods
statements, e.g., variables, declaration, and dependencies, on the nodes; instead,
as already mentioned, we add the out-degree as the sole node feature to be able
to train the probabilistic model. Hence, our methodology is intrinsically robust
to intra-procedural obfuscations techniques, such as Code Reordering/Removal,
Junk code insertion, Instruction substitution, Control Flow modifications, Iden-
tifiers and Variables renaming/encryption, and Repacking [1]. Indeed, these
obfuscation techniques modify the method’s statements but they do not alter
the number of invoke or call statements, so the initial CG is exactly the same
as any intra-procedurally obfuscated CG.

Malware samples were collected from the AMD and previous work datasets
[17], and the benign samples were downloaded from Google Play. Both the mal-

IThe Soot transformation code is available at https://github.com/Djack1010/graphdapk

371

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

graphs # classes avg V| avg|f| min deg max deg avg deg
5669 8 5069 3267 0 618 0.58

Table 1: Dataset statistics. Graphs are large but sparse, and the average degree
is low because all calls to external libraries have been removed from the CG.

MODEL TR Loss TR Acc. VL Loss VL Acc. TE Loss TE Acc.
BASELINE 1.240.05 55.64+0.5 1.140.01 60.640.9 1.140.03 56.7+0.5
CGMM 0.014+0.01 99.840.4 0.1640.01 97.940.2 0.13+0.01 96.440.6

Table 2: Malware classification results (mean and standard deviation) on train-
ing (TR), validation (VL) and test (TE) sets. We display both the Cross-Entropy
loss as well as the multi-class accuracy. Results are averaged over 3 final runs.

ware and the trusted applications were verified with VirusTotal, to ensure either
their maliciousness or trustiness. The resulting dataset consists of 5669 samples
of real-world malware, split into 8 classes, where one represents the trusted soft-
ware (1762 samples) and the others stand for different malware families, namely
Airpush (736 samples), Dowgin (1040 samples), FakeInst (190 samples), Kuguo
(879 samples), Youmi (959 samples), Fusob (73 samples), and Mecor (30 sam-
ples). Dataset statistics are described in Table 1.

To assess the performance of CGMM on our CG dataset, we split the data
according to a stratified hold-out strategy, with 80% of the data for training,
10% for validation and 10% for test.? To empirically evaluate the impact of
the structure in the dataset, we follow [18] and introduce a structure-agnostic
baseline. The baseline applies an MLP to the node features, performs global
aggregation and then applies a linear output layer. We performed grid-search
model selection for both the baseline and CGMM, with early stopping moni-
toring the classification accuracy. In the case of the former, we tried: hidden
units € {32,64,128}, 2000 epochs, batch size 128, global aggregation € {sum,
mean}, Adam Optimizer with learning rate € {0.01, 0.001}, patience € {50}.
For CGMM, instead, we selected the best model across the following configura-
tions: 20 states, layers € {10,20}, 10 EM epochs, posterior version € {discrete,
continuous}, embedding version € {unigram, unibigram}, global aggregation €
{sum, mean}, batch size 64, 2000 epochs, hidden units € {32,64,256, 512}, Adam
Optimizer with learning rate € {0.0001} and weight decay € {0., 0.0005}, and
patience 100. We trained CGMM via EM and the neural classifiers using the
Cross-Entropy Loss. In the interest of space, we refer to [14] for a thorough
explanation of all the hyper-parameters. We relied on the PyDGN library [11]
to carry out robust and reproducible experiments.

3.1 Results and Discussion

Results are shown in Table 2. As we can see, the structural variability in the
dataset is such that a structure-agnostic baseline cannot accurately classify in-

2https://github.com/diningphil/robust-call-graph-malware-detection

372

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

1.0

Airpush -JeSyM 0.014
Dowgin- 0 0.038 0.8

Fakelnst- O
0.6

o Kuguo- 0
E
Youmi- O
umi L0
Fusob- 0
Mecor- 0 0 -0.2

Trusted- 0 0.023 0 0.011 0.034 0
' ' ' ' ' ' ' -0.0
SN 5 o Q> Y < >
o D o N & O o &
& S RS R < S X
. & 2 N S N & S
Wt S

Predicted

Fig. 2: Row-normalized confusion matrix of CGMM computed on the test set.

stances by merely looking at the out-degree statistics of the graph. Instead,
CGMM is able to extract structural patterns that allow the subsequent clas-
sifier to achieve a 96.4% accuracy on the test set (and a Macro F1 score of
97.2%). This very good result supports our knowledge that different malware
families share detectable topological similarities and hence our hypothesis on the
robustness of the approach to intra-procedural obfuscations. In fact, we were
able to accurately detect such similarities without relying on non-adaptive pro-
cedures, domain expertise, and static analysis’ node features that are sensitive
to obfuscation techniques. In addition, the confusion matrix of Figure 2 shows
how accuracy does not decrease for the most imbalanced classes, e.g., Fusob and
Mecor. Rather, the classifier achieves perfect classification on those test samples.
Finally, to empirically confirm that the proposed approach is robust to intra-
procedural obfuscation methods, we also performed inference on an obfuscated
subset of test malwares (261 out of 391, due to intrinsic difficulties in the process,
e.g., sometimes the obfuscated code did not compile) using the Code Reordering
and Junk Code techniques in [1]. The model achieved a 99.6% accuracy.

4 Conclusions

We have presented a machine learning methodology for malware classification
that is intrinsically robust to intra-procedural obfuscation techniques. By clas-
sifying program instances based solely on the topology of their call graphs, we
have showed that it is possible to get excellent accuracy and F1 score on an
imbalanced dataset. In future works, we will extend the evaluation to other
malware families, analyse the impact of obfuscation on other classification tools,
and assess the robustness to known inter-procedural obfuscation techniques.

References
[1] Alessandro Bacci, Alberto Bartoli, Fabio Martinelli, Eric Medvet, and Francesco Mer-

caldo. Detection of obfuscation techniques in android applications. In Proceedings of the
13th International Conference on Availability, Reliability and Security, pages 1-9, 2018.

373

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

2

Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes Kinder,
Giorgio Giacinto, and Lorenzo Cavallaro. Droidsieve: Fast and accurate classification
of obfuscated android malware. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, pages 309-320, 2017.

3

Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto. Stealth
attacks: An extended insight into the obfuscation effects on android malware. Computers
& Security, 51:16-31, 2015.

[4

Shanhu Shang, Ning Zheng, Jian Xu, Ming Xu, and Haiping Zhang. Detecting malware
variants via function-call graph similarity. In 5th International Conference on Malicious
and Unwanted Software, pages 113-120. IEEE, 2010.

[5] Ammar Ahmed E Elhadi, Mohd Aizaini Maarof, Bazara IA Barry, and Hentabli Hamza.
Enhancing the detection of metamorphic malware using call graphs. computers & security,
46:62-78, 2014.

[6] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection of
android malware using embedded call graphs. In Proceedings of the 2018 ACM workshop
on Artificial intelligence and security, pages 45—-54, 2013.

7

Giacomo ITadarola, Fabio Martinelli, Francesco Mercaldo, and Antonella Santone. Call
graph and model checking for fine-grained android malicious behaviour detection. Applied
Sciences, 10(22):7975-7994, 2020.

Gerardo Canfora, Andrea De Lorenzo, Eric Medvet, Francesco Mercaldo, and Cor-
rado Aaron Visaggio. Effectiveness of opcode ngrams for detection of multi family android
malware. In 10th International Conference on Availability, Reliability and Security, pages
333-340. IEEE, 2015.

Akshay Kapoor and Sunita Dhavale. Control flow graph based multiclass malware detec-
tion using bi-normal separation. Defence Science Journal, 66(2), 2016.

B

9

[10] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond Euclidean data. IEEE Signal Pro-
cessing Magazine, 34(4):25. 18-42, 2017.

[11] Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction
to deep learning for graphs. Neural Networks, 129:203-221, 9 2020.

[12] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 32(1):4—24, 2021.

[13] Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual Graph Markov Model:
A deep and generative approach to graph processing. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML), volume 80, pages 294-303, 2018.

[14] Davide Bacciu, Federico Errica, and Alessio Micheli. Probabilistic learning on graphs via
contextual architectures. Journal of Machine Learning Research, 21(134):1-39, 2020.

[15] Daniel Ziigner and Stephan Giinnemann. Certifiable robustness and robust training for
graph convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 246-256, 2019.

[16] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A java bytecode optimization framework. In CASCON First Decade
High Impact Papers, pages 214-224, 2010.

[17] Giacomo Iadarola, Fabio Martinelli, Francesco Mercaldo, and Antonella Santone. To-
wards an interpretable deep learning model for mobile malware detection and family
identification. Computers € Security, 105:102198-103012, 2021.

[18] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison
of graph neural networks for graph classification. In Proceedings of the 8th International
Conference on Learning Representations (ICLR), 2020.

374

