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Abstract. In this paper two different convolutional neural network
(CNN) architectures are investigated for the purpose of real-time on-edge
domestic acoustic event classification. For training and evaluation of the
models, a real-life acoustical dataset was recorded in 72 different home en-
vironments. A quantization-aware training scheme was applied that takes
into account that the models need to run on 8-bit fixed-point processing
hardware. Once trained, the models were successfully deployed on an ARM
cortex-M7 microcontroller unit (i.MX RT1064). This study indicates that
the used procedure can lead to an efficient and real-time embedded on-edge
implementation of a domestic sound event classifier that does not sacrifice
classification performance compared to its floating-point counterpart.

1 Introduction

Shifting machine learning (ML) algorithms from the cloud to the sensor gained
a lot of interest in recent years. At sensor side there are often stringent con-
straints regarding computational resources and energy consumption resulting
in the need of small and low-power ML algorithms. On-edge processing comes
with the advantage that no data must be transmitted (wirelessly) and thereby
offering an improved user privacy, lower latency and reduced energy consump-
tion. This in combination with the increased computing performance in today’s
off-the-shelf microcontroller units (MCU’s) makes that a wide range of new ap-
plications became available. For instance, real-time predictive maintenance in
factories from inertial and motion sensor data [1], long-term patient monitoring
at home from vital sensor data [2], autonomous controlled vehicles and robots
from environmental data [3], and so on.

Although the use of acoustic sensors for indoor monitoring applications is
already widely examined in the scientific community, most of the proposed so-
lutions are focusing to the use of complex and computationally demanding deep
learning frameworks [4]. Hence, in this paper we will specifically focus to the
use of a compact convolutional neural network (CNN) architecture that can be
deployed on a standard off-the-shelf MCU in a real-time setting during inference.

The remainder of this paper is organized as follows: Section 2 discusses the
investigated on-edge convolutional classifier architectures. Section 3 describes
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the details of the performed experiments. The obtained results in terms of
classification performance, memory requirements and on-edge inference time are
discussed in Section 4, and is followed by the final concluding remarks which are
given in Section 5.

2 Pooling vs. no-pooling model architectures

The acoustic event classifiers examined in this work are all based on a CNN
architecture. The trade-off between model complexity and classification accuracy
will be investigated for the purpose of a real-time on-edge deployment. The
complexity of a CNN model can be controlled on both the architectural level (i.e.
number of layers, filters, etc.) and the arithmetic level (i.e. data type precision).
Hence, in this research two different CNN architectures will be investigated both
for a 32-bit floating-point and a 8-bit fixed-point implementation.

Traditional CNN models typically use a pooling layer after each convolutional
layer to add local translation invariance and to reduce the dimensionality of the
feature maps1. The lower the feature map dimensions the less processing is
required. The feature map dimensionality of the network can also be reduced
without the need of pooling layers by increasing the stride length of the filters.
This removes the local translation invariance property of the model but comes
with a significantly lower number of computational operations which is benificial
for an embedded implementation.

This paper will empirically examine if the local invariance is really needed in
case when working on a time-frequency representations of short-term acoustic
signals. The latter is done by comparing the obtained classification results of a
traditional ‘pooling’ model architecture with a ‘no-pooling’ model architecture
when learned from acoustical data.

3 Experimental setup

3.1 Dataset

The on-edge acoustic event models will be learned from a real-life dataset col-
lected at 72 different home environments. Each participant of the measurement
campaign was asked to record eight different domestic sound events by following
a predefined recording protocol. All recordings were labelled on-the-fly and were
directly saved to an SD-card with a sampling frequency of 32 KHz and 16 bits
per sample. In total 47.7 hours of data and 1519 recordings were collected during
the measurement campaign. An overview of the dataset is given in Table 1.

3.2 Feature extraction

The most commonly used features in the domain of acoustic scene and event
classification in combination with a deep learning strategy are the so-called log-
Mel features [4]. In this work, the log-Mel features are computed from short

1Moreover, to some extent adding the pooling layer reduces the risk of overfitting.
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Class Hours Recordings
Background 10.5 205
Door & window 5.3 141
Faucet & shower 9.3 386
Footstep 4.2 220
Kitchen hood 4.0 140
Speech 4.9 217
Toilet 5.5 136
Radio & television 4.0 74

Table 1: Overview of the recorded domestic sound event dataset.

overlapping frames with a frame size of 32 ms and a frame shift of 10 ms.
Next, a 1024-point fast-Fourier transform (FFT) is applied to each frame and is
followed by a log Mel-frequency warping operation using a Mel-spaced filterbank
spanning 64 filters.

3.3 Model architectures and quantization

As already briefly mentioned in Section 2, two different CNN model architec-
tures will be investigated in this work. Both model CNN architectures will be
made up of three convolutional layers (feature learning part) and two fully con-
nected layers (classification part), and will be evaluated with two different input
sizes and three different numbers of filters per convolutional layer. The feature
learning parts of the two model architectures are configured as follows:

• ‘pooling’ architecture: three convolutional layers with a filter size of (4×4),
filter stride of (1 × 1), padding, relu activation, and a pool size of (1 × 4).

• ‘no-pooling’ architecture: three convolutional layers with a filter size of
(4× 4), filter stride of (1× 4), no-padding, relu activation, and no-pooling.

The classification part of both models is made up of a fully-connected layer
with 64 output neurons and a relu activation, and a fully-connected layer with 8
output neurons (nr. of classes) and a softmax activation for classification. The
two examined input shape sizes are (50 × 64) (T=50) and (100 × 64) (T=100)
corresponding to an audio input size of 0.5 and 1.0 sec. respectively given a
frame shift of 10 ms. The examined number of filters per convolutional layer are
16 (model small), 32 (model medium) and 64 (model large).

All models are learned in TensorFlow with a 32-bit floating-point precision.
The learned models are then converted to an 8-bit fixed-point precision for an
embedded deployment using the TensorFlow Lite quantized-aware retraining
procedure [5]. This retraining operation simulates the effects of quantization
during inference and is done as follows:

• Feed-forward pass: the effects of quantization are simulated by quantizing
the weights and activations to 8-bit integers and converting them back
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to 32-bit floats. This operation mimics the effects of a less precise data
representation although all computations are still performed with a 32-bit
floating-point representation.

• Feed-backward pass: the model weights will be updated using backprop-
agation. The gradients to update the weights are calculated from the
outputs obtained in the feed-forward pass.

Both steps are repeated until convergence or the maximum number of epochs
(iterations) is reached. Once the quantized-aware retraining procedure is com-
pleted, the model weights can be converted to an 8-bit fixed-point precision and
all computations can be performed with integers only during inference.

3.4 Training, validation and test set generation

The training, validation and test sets are obtained by applying a 4-fold cross-
validation on the randomly shuffled log-Mel input segments of size T. This oper-
ation results in to four independent training and test sets with a ratio of 75/25%
respectively. The validation sets are then obtained by randomly drawing 30% of
the segments from the corresponding training sets.

From Table 1 it can be clearly seen that there is also a significant class
imbalance. Therefore, the minority classes in both the training and validations
sets are up-sampled to have as much segments as the majority class. This results
in a balanced training and validation set per fold which prevents the learned
model to focus to the largest classes while disregarding the smaller classes.

Next, per cross-validation iteration the dataset is also normalized to zero
mean and unit standard deviation in each log-Mel dimension. The normalisation
parameters are learned from the training set and are kept fixed for the validation
and test set. After normalisation, each log-Mel dimension has a zero mean and
unit standard deviation thereby preventing the model to focus to some specific
log-Mel features.

4 Results

All obtained results are listed in Table 2. By analyzing the classification scores
for both the unquantized and quantized models, i.e. u/q-rows respectively, it
can be clearly seen that the used quantization scheme has practically no impact
on the classification performance (< 1%). This implies that these models can
be deployed on an embedded platform with an integer-only inference framework
without the need of sacrificing classification accuracy. The best and least accu-
rate scores are 88.6 ± 0.2% and 71.6 ± 0.3%, and are obtained with the settings
‘no-pooling, model large, T=100’ and ‘pooling, model small, T=50’ respectively.

By analyzing the quantized weights and buffer sizes, and the corresponding
inference times, i.e. s/t-rows respectively, it can also be seen that using a more
complex model architecture (i.e. a higher number of filters per convolutional
layer), or using a larger input size, has a significant impact on the required
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memory and inference time as well. Doubling the number of filters per con-
volutional layer, or doubling the input size of the network, significantly boosts
the classification performance but comes with the cost of an increased memory
usage and inference time. The reason for the increased performance is simply
due to the fact that a more complex model architecture is able to learn more
details from the data, and that a larger input size provides more data to the
CNN model to rely on for the prediction.

Another important observation that can be made is that the ‘no-pooling’
model architecture yields a higher classification performance, a three to four
times faster inference speed, and a four times smaller memory footprint com-
pared to its ‘pooling’ counterpart. The reason for the smaller memory footprint
is that the larger filter stride in the convolutional layers (i.e. (1 × 4) in this
work) directly produce smaller feature maps compared to a unit filter stride. In
addition, using a larger filter stride also yields less arithmetic operations during
the convolution operation, and in combination with the fact that no pooling
layers are required to reduce the feature maps makes that the inference time of
the network can be significantly reduced.

Model S Model M Model L
16 filters/layer 32 filters/layer 64 filters/layer

Pooling

T=50

u 71.6 ± 0.3% 77.9 ± 0.1% 84.0 ± 0.3%
q 70.8 ± 0.1% 77.2 ± 0.2% 83.5 ± 0.1%
s 61/64 kb 137/128 kb 339/256 kb
t 77 ms 158 ms 443 ms

T=100

u 75.7 ± 0.6% 81.5 ± 0.4% 86.2 ± 0.2%
q 75.2 ± 0.6% 80.9 ± 0.1% 85.9 ± 0.3%
s 112/128 kb 239/256 kb 543/512 kb
t 137 ms 315 ms 877 ms

No-pooling

T=50

u 72.8 ± 0.2% 79.8 ± 0.1% 86.1 ± 0.1%
q 72.9 ± 0.2% 79.6 ± 0.3% 85.9 ± 0.1%
s 61/16 kb 137/32 kb 339/64 kb
t 24 ms 44 ms 114 ms

T=100

u 77.9 ± 0.1% 83.8 ± 0.1% 88.6 ± 0.2%
q 77.6 ± 0.3% 83.7 ± 0.2% 88.2 ± 0.1%
s 112/32 kb 239/64 kb 543/128 kb
t 38 ms 88 ms 223 ms

Table 2: Obtained results for the two model architectures. The u/q-rows are the
classification scores for the unquantized and quantized models, the s-rows are
the quantized model weights and buffers sizes, and the t-rows are the inference
times to classify one input segment on the i.MX RT1064 development board.

Note 1: The log-Mel feature extraction part requires 70 kb of memory and takes about 29.75
ms and 59.50 ms to compute 50 and 100 input frames respectively.
Note 2: The model weights and buffer sizes are indicative only. For an embedded deployment
larger memory banks are required to store intermediate feature maps and additional overhead.
Note 3: The classification latency is dependent of the used input size. More specifically, a
classification can only occur when a complete input segment is processed from the audio data.
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5 Conclusions

This paper investigates a convolutional neural network (CNN) based architec-
ture for a real-time on-edge classification of domestic sound events. Two differ-
ent CNN model architectures are examined, i.e. a ‘pooling’ and a ‘no-pooling’
approach to reduce the feature maps and the number of arithmetic operations
throughout the network, and are evaluated with respect to classification perfor-
mance, memory footprint and inference time. The proposed model architectures
are evaluated on a self-recorded acoustic event dataset collected from 72 different
home environments. The obtained results indicate that the no-pooling model
architecture settings achieve higher classification scores compared to their pool-
ing counterparts, and that they also come with a significantly reduced memory
footprint (factor four) and a faster inference time (factor three to four). Further-
more, this work also shows that the used quantized-aware retraining procedure
to convert the learned models to an 8-bit fixed-point representation for an em-
bedded deployment yields no degradation in classification performance. The best
obtained embedded classification accuracy is 88.2± 0.1% and is obtained by the
no-pooling model architecture using an input size of 100 frames and 64 filters
per convolutional layer. This model architecture requires 543 kb for the model
weights and 128 kb to store the intermediate feature maps, and takes only 223
ms to classify 1.0 second of audio data. Future research will mainly focus to the
development of an on-edge model adaptation strategy using a fixed-point learn-
ing scheme. This allows the model to adapt its model parameters and to learn
new sound events on-the-fly in a real-time setting from newly collected samples.
Furthermore, future research will also focus to reduce the energy consumption of
the proposed system architecture in order to enable battery powered solutions.
Possible techniques to lower the power consumption can be done on both the
hardware level (e.g. optimized hardware) and software level (e.g. standby mode
when no sound is detected).
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