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Abstract. In this paper we present a realization of the information-
bottleneck-paradigm by means of an improved counter propagation net-
work. It combines an unsupervised vector quantizer for data compression
with a subsequent supervised learning vector quantization model. The
approach is mathematically justified and yields an interpretable model for
classification under the constraint of data compression, which is not longer
independently learned from the classification task.

1 Introduction and Motivation

The processing of complex data is of increasing importance because the avail-
ability of more and more complex data pervades many branches in industry and
research. For example, high-resolution spectrometers in medicine and bioinfor-
matics deliver huge-dimensional data records. In astrophysics terabytes of data
arrive daily and often require instantaneous decisions regarding storage or/and
further processing. Frequently, the data can be kept as compressed data usu-
ally accompanied by an information loss. In fact data compression may destroy
valuable information needed later for data evaluation. In information theory
this problem is known as the information bottleneck principle (IBP) [24].

In this paper we address this problem in context of interpretable classifica-
tion learning, i.e. we propose a vector quantization based approach to realize
an information bottleneck network for classification. The starting point is the
heuristically motivated counter propagation network (CPN) introduced by R.
Hecht-Nielsen [10, 11]. The CPN network consists of two steps: First, the
data are sluiced through a self-organizing map (SOM) network for information
compression and clustering [14]. Second, a perceptron layer evaluates the SOM-
response for classification or regression learning. Recently, the idea of this vector
quantization combination with perceptron layers was renewed by C. Rudin for
deep multi-layer perceptrons to achieve better robustness [6]. Yet, the CPN
approach offers at least two drawbacks: Although the SOM vector quantizer
frequently yields a surprisingly good data representation, a mathematical guar-
antee for optimum data coding can not be given [7]. Further, the unsupervised
SOM training is independent from the subsequent supervised perceptron train-
ing. This motivates our approach: We replace the SOM-layer by a neural gas
vector quantizer, which is mathematically justified and constitutes an informa-
tion optimum data compression for high-dimensional data [17]. Further, we
substitute the perceptron layer by a learning vector quantization (LVQ) layer
evaluating the vector quantizer response for interpretable classification learning.
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Both layers are coupled via gradient training, i.e. the neural gas layer receives
information from the subsequent classification layer during training. In this
way, the compression process is influenced by the subsequent classification task
realizing the IBP.

The presented approach is also in relation to [4], where a combined compres-
sion and classification method by learning vector quantization is considered. Yet,
the classification decision there is based on majority vote regarding the receptive
fields by a c-means vector quantizer [16]. In [15] as well as in [18, 19], classifica-
tion learning based on quantizer codebooks is investigated by information loss
minimization using Gaussian mixture models to classify. For optimization they
use an alternating update heuristics.

The paper is structured as follows: First we briefly present the original
counter propagation network. Thereafter we explain the improvements provided
by our approach. Numerical simulations and concluding remarks are the final
part of this contribution.

2 The Original Counter Propagation Network

As already mentioned, the idea of a counter propagation network (CPN) is to
combine a SOM vector quantizer for the representation of data X ⊆ Rn with a
perceptron layer for supervised learning of class labels c (x) ∈ C = {1, . . . , C}.
The perceptron layer is also denoted as Grossberg-layer, as defined in [9], in this
context and was later also used in adaptive-resonance-theory (ART) networks
[5]. We will denote the first layer as the sensoric vector quantization layer and
the second layer as the classification layer to emphasize the more general context
later in this paper.

The SOM supposes that the sensoric prototype set W ⊆ Rn is related to an
external sensoric grid S ⊂ Rp [14], inspired by the cortical areas in the human
brain processing all sensoric information. Thus, the projection dimension p is
chosen as p = 2. Here, we assume K prototypes wk ∈ W where the index
r (k) ∈ S refers to a location in the sensoric grid S and k (r) ∈ {1, . . . ,K}
returns the respective index in W . For a given input x ∈ X the most appropriate
prototype is determined by the winner-takes-all (WTA) rule

s (x) = argmink(r)|r∈S dE (x,wk) (1)

with dE (x,wk) being the (squared) Euclidean distance realizing the Hebbian ex-

citation [20]. We define a response vector ξ (x,W ) with ξ (x) = (ξ1, . . . , ξK)
T ∈

Ξ ⊆ RK with Ξ denoting the sensoric response field. The WTA-rule delivers

ξk(r) (x,W ) =

{
1 k = s (x)

0 k 6= s (x)
(2)

as stimulus response. We can interpret this mapping x 7→ ξ (x,W ) as an in-
formation compressing mapping realized by a vector quantizer. The prototype
adaptation is

∆wk ∝ −hSOMλ (r (k) ,x,W ) · ∂d (x,wk)

∂wk
(3)

where

hSOMλ (r (k) ,x,W ) = exp

(
−‖r (s (x))− r (k)‖S

2σ2

)
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is the grid dependent neighborhood function with neighborhood range σ.
The perceptron layer consists of a single linear perceptron realized as

y (x) = ωT · ξ (x,W ) (4)

with an adjustable perceptron weight vector ω to achieve a good class label
prediction c (x) = y (ξ (x,W )). We can summarize the CPN scheme as

X
P (X)−→
SOM

W
ξ(x,W )−→

crisp
Ξ

y(ξ(x,W ))−→
perceptron layer

C (5)

where P (X) is the data density. Training in CPN takes place in two phases:
First, the VQ-layer (SOM) is trained in an unsupervised manner. Second, the
perceptron weight vector ω is adapted by supervised learning. Thus, the SOM
layer yields a grouping of data whereas the perceptron learns to interpret this
grouping for classification learning.

At least two improvements are discussed in the community so far:

1. Instead of only one perceptron, class-wise non-linear perceptrons are taken
[8], i.e. yk (x) = f

(
ωTk · ξ (x,W )− βk

)
with biases βk and an activation

function f frequently taken as sigmoid.

2. Several authors suggested to relax the WTA-rule taking more than a single
winning unit [8, 12]. For this purpose, N units of the SOM layer surround-
ing the winning unit r (s (x)) in S are taken with ξk(r) (x,W ) = 1

N for all
these including the winning neuron r (s (x)).

The CPN approach frequently works very successful although being simple [3, 8,
26]. One can see this also as an early approach to incorporate prototype layers
in multi-layer perceptrons as recently discussed in [6]. Yet, the SOM-training
takes place independently from the subsequent classification task and, hence,
might be suboptimal for the later classification learning. Further, the original
SOM does not optimize any cost function such that mathematical guarantees
for data grouping behavior are given [7]. Therefore, we propose new variants
and extension of this basic CPN.

3 Proposed Modifications of the CPN

An alternative to SOM is the neural gas vector quantizer (NG) [17]. For NG,
neighborhood of the prototypes is given implicitly by the exponential winning-
rank-function of the prototype wk

hNGλ (k,x,W ) = exp

(
−
∑
j H (d (x,wk) − d (x,wj))

λ

)
withH (z) =

{
1 for z > 0

0 elsewere
(6)

being the Heaviside function. The prototype dynamic is as (3) for SOM replac-
ing there the SOM-neighborhood function by hNGλ (k,x,W ) and reads as

∆wk ∝ −
∂ξNG (x,W )

∂wk

in prob.
= hNGλ (k,x,W ) · ∂d (x,wk)

∂wk
(7)

involving the neighborhood cooperativeness. In fact, it performs a stochastic
gradient descent on a cost function, which can be interpreted as the potential
function of this gas [17]. Further, according to the magnification property of
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NG, resulting from the neighborhood-cooperative learning of NG (7), we can
conclude that NG forms an information optimum data representation by the
trained prototypes.

Further, we introduce gradual responses as known from Heskes-SOM

ξNGk (x,W ) = hNGλ (k,x,W ) · dΨ (x,wk) (8)

for the NG-layer reflecting both the winning rank as well as the dissimilarity
dΨ (x,wk) = (Ψ (x−wk)) between the data and sensoric prototypes, where Ψ ∈
Rn×n is a mapping matrix. Further, to keep the interpretability, we replace the
perceptron classifier by a prototype based learning vector quantization classifier
(LVQ, [13]). Taking the sensoric responses ξNG as input, the LVQ assumes

prototypes W =
{
|ωj ∈ RK

}M
j=1

with class labels c (ωj). According to [22, 23],

a classifier function is defined as

µΩ

(
ξNG (x,W ) ,W

)
=
δΩ

(
ξNG (x,W ) ,ω+

)
− δΩ

(
ξNG (x,W ) ,ω−

)
δΩ

(
ξNG (x,W ) ,ω+

)
+ δΩ

(
ξNG (x,W ) ,ω−

) (9)

with the dissimilarity measure δΩ

(
ξNG (x,W ) ,ω

)
=
(
Ω
(
ξNG (x,W )− ω

))2

and the LVQ mapping matrix Ω ∈ RK×K . Thereby, ω+ is the best match-
ing prototype ωj according to the WTA-rule (1) known from SOM with the
constraint of class label agreement c (ωj) = c (x). Analogously, ω− is the best
matching prototype among all prototypes responsible for any other classes than
c (ξ (x,W )). Thus, µΩ delivers negative values for correct classification. An

unknown data point x is mapped to to the class c
(
ωs(ξNG(x,W ))

)
according to

the WTA rule (1). This generalized matrix LVQ (GMLVQ) is mathematically
proven to be a large margin classifier and robust while keeping the interpretabil-
ity according to the prototype reference principle [21, 25]. Its cost function
EGMLVQ (W) =

∑
xEL (x,W,W ) approximates the overall classification error

with local errors EL (x,W,W ) = f (µ (ξ (x,W ) ,W)). Here f is a differentiable
sigmoid transfer function. Learning for the prototypes ωj takes place as the
stochastic gradient descent by means of the gradients

∇ω+,ω−EL (x,W,W ) = ∇δΩ(ξ,ω±)EL (x,W,W ) ·
∂δΩ

(
ξNG (x,W ) ,ω±

)
∂ω±

using the abbreviation

∇δΩ(ξ,ω±)EL (x,W,W ) =
∂f
(
µΩ

(
ξNG (x,W ) ,W

))
∂µΩ

(
ξNG (x,W ) ,W

) ·
∂µΩ

(
ξNG (x,W ) ,W

)
∂δΩ (ξ,ω±)

whereas Ω-learning requires the evaluation of∇ΩEL (x,W,W ). Yet, considering
the gradients

∇wk
EL (x,W,W ) = ∇δΩ(ξ,ω±)EL (x,W,W )·

∂δΩ

(
ξNG (x,W ) ,ω±

)
∂ξNG (x,W )

·∂ξ
NG (x,W )

∂wk
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we are able to adapt the sensoric prototypes in the VQ-layer in dependence on
the classification problem simply making use of the chain rule for derivatives.
However, their adaptation dynamic still involves the neighborhood cooperative-
ness of NG (7) and, therefore, tries to keep information optimum for the VQ-layer
realizing the IBP. Further, the gradient ∇ΨEL (x,W,W ) can be used to adapt
the NG-mapping matrix Ψ in dependence of the subsequent classification task.

The modified CPN approach can be summarized in relation to (5) as

X
P (X)

�
NG

W
ξNG(x,W )

�
NG-like

Ξ
c
(
ωs(ξNG(x,W ))

)
−→

GMLVQ
C (10)

constituting an interpretable realization of the IBP for classification learning.

4 Example Application – Classification of Whisky Spectra

We demonstrate the ability of the proposed model for the classification of whisky
Raman spectra, dimensionality n = 401, with respect to the age of the whisky
(D1 - three classes) and the kind of wood for the cask (D2 - four classes). The
data were used and described in [1, 2]1. Here, we show the performance of
the CPN in dependence on separate or combined NG- and GMLVQ learning
in CPN as well as in dependence on the compression ratio cr = K/n. The
results obtained by three-fold cross validation are depicted in Tab. 1. As we can

Table 1: Accuracy results: NG+GMLVQ – NG trained independently from
GMLVQ; modified CPN – our approach; GMLVQ – without data compression.

see, combined CPN outperforms the separated learning NG+GMLVQ. Further,
moderate compression still leads to satisfying accuracy.

5 Conclusion

We reconsidered CPN as introduced by R. Hecht-Nielsen. In particular, we
replace the SOM-layer by a neural gas layer and the perceptron layer is substi-
tuted by a GMLVQ layer. Importantly, learning is realized combining both layers
for gradient descent learning applying the chain rule for the derivatives. Thus
we obtain a mathematically justified interpretable realization of the information
bottleneck principle.
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