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Abstract. In this paper, we present a new method to perform model

structure selection. This proposed method can be used to select the com-

plexity of any continuous regression method. We also present an asymp-

totic mathematical proof of the proposed method and the new method is

illustrated on a benchmark. Compared to the well-known 10-fold Cross-

Validation, the computational time associated to our new method is ap-

proximately divided by a factor 8 as illustrated on the benchmark.

1 Introduction

In machine learning, modeling is the creation and tuning of an algorithm to take
in certain data, recognize patterns amongst the data, and produce predictions
based on this and future data. The input and output of information to a model
is similar to that of a mathematical function. Regression is a modeling tech-
nique that utilizes supervised learning, where the expected output of an input is
known, in order to train models to predict continuous values from several input
variables. Much research has been dedicated to creating new algorithms to per-
form regression across a broad domain. However, when a new data set arises,
it is often difficult to select which particular regression model to use. Further,
once a certain algorithm is chosen, tuning the structure for this algorithm can
prove to be even more labor and computationally intensive. Therefore in this
paper, we propose a new method to perform model structure selection.
Model selection is the process of selecting several different machine learning
models, training them each on the same set of training data, and then evaluat-
ing the models on their ability to perform predictions on a new and unused set
(validation set, [1, 2, 3]). Model structure selection is the process of changing
the complexity of a model in order for it to perform better on new data. The dif-
ficulty in model structure selection arises due to the fact that if a certain model
structure predicts extremely accurately on the training set or even the validation
set, then it is not necessarily the best structure to use in future prediction. This
is due to the potential for overfitting or underfitting.
Overfitting occurs when a statistical model or machine learning algorithm cap-
tures the noise of the data [1]. Intuitively, overfitting occurs when the model or
the algorithm fits the data too well. Specifically, overfitting occurs if the model
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or algorithm shows low bias but high variance. Overfitting is often a result of
an excessively complicated model, and it can be prevented by fitting multiple
models and using validation or Cross-Validation to compare their predictive ac-
curacies on validation data. Underfitting occurs when a statistical model or
machine learning algorithm cannot capture the underlying trend of the data.
Intuitively, underfitting occurs when the model or the algorithm does not fit
the data well enough. Specifically, underfitting occurs if the model or algorithm
shows low variance but high bias. Underfitting is often a result of an excessively
simple model. Both overfitting and underfitting lead to poor predictions on new
data sets. Ideally, we want to select a model at the sweet spot between under-
fitting and overfitting, and we will denote such sweet spot goodfitting.
Due to the potential of sampling error in the training and validation sets, a
goodfitting model has the lowest generalization error. Generalization error is
defined as a quantity for how well a model can predict on data that was not
used to train the model. The current state of the art for model structure selec-
tion, 10-fold cross validation, is estimating the generalization error. Put simply,
10-fold cross validation is performed on a model by training the model on 90%
of the data and validating on the remaining 10%. This process is repeated 10
times, with a completely different 10% of data used in validation and remaining
90% in training each time. The generalization error of the model structure can
then be evaluated based on average of the 10 validation set prediction errors.
Though the 10-fold cross validation is good at selecting the complexity of a
model, the issue is that this method is slow since the model must be retrained
10 times. With the increased complexity and thus increased training times of
new machine learning models, using 10-fold cross validation for model structure
selection often is not feasible. For this reason, in this paper we propose a new
method, called Nearest-Neighbor Based Model Structure Selection (NNBMSS),
which can perform several times faster than 10-fold cross validation without a
loss in performance. In short, NNBMSS is able to achieve such speed by only
training the model once as described further below.
In Section 2, the proposed method is introduced. In Section 3, an asymptotic
mathematical proof is presented using the concepts of overfitting, underfitting
and goodfitting. In Section 4, the method is illustrated on a benchmark and in
Section 5, these results are analysed.

2 The Proposed Method

As stated, our novel method for model structure selection resolves the issue
of high computation complexity of the current state of the art, 10-fold cross
validation. This new algorithm, called Nearest-Neighbor Based Model Struc-
ture Selection (NNBMSS), achieves this through the use of the following metric:
Var[yi − ŷNN(i)] (defined in Section 3). This metric is a good estimator to eval-
uate if a regression model is optimal or not, as demonstrated in an experiment
in Section 4.
There are two main advantages to NNBMSS. First, NNBMSS uses all available
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training data to select the complexity of the model. For each step of a 10-fold
cross validation, only 90% of the data is used to train the model. This may result
in sampling error, whereas NNBMSS, which utilizes all of the data, is less prone
to this problem. Though NNBMSS has to search the Nearest Neighbor of each
sample to find the optimal model structure, which is computationally expensive,
NNBMSS still performs significantly faster than 10-fold cross validation due to
NNBMSS’s second main advantage: the model is built only once. The proposed
method is related to the Delta Test that has been used for model structure se-
lection in [4, 5]. The Delta Test is a non-parametric technique that is utilized
to estimate variance in a supervised learning context, such as regression. In the
following section, we are going to give an asymptotic mathematical proof of the
efficacy of the NNBMSS to select the optimal model structure in the context of
a regression problem. Then, in Section 4, we are going to show that NNBMSS
works in practice and is significantly faster than the current state of the art.

3 Mathematical Proof

In this proof, the regression model is denoted by f and the samples (points) are
denoted (xi, yi) with 1 ≦ i ≦ N , N being the number of samples. For each sample,
yi is the output of the input xi. Using the model f , the approximation provided
by the regression model is denoted ŷi and we can express the regression model as
ŷi = f(xi). The nearest neighbor of xi is denoted xNN(i), therefore the output of
xNN(i) is yNN(i). The first assumption is that the output yi is noisy and therefore
is not the optimal approximation for the input xi. We choose to denote the
optimal approximation ỹi. We can then write yi = ỹi+ǫi with ǫ a random variable
with zero mean and variance σ2. The second assumption is that the input space
is bounded and that the true regression problem and its approximation are
continuous. Then, for N that tends to infinity, the nearest neighbor of a sample
is getting closer and closer to this sample itself, and therefore

ŷNN(i) ÐÐÐ→
N→∞

ŷi (1)

and also
ỹNN(i) ÐÐÐ→

N→∞
ỹi. (2)

Our hypothesis is that Var[yi − ŷNN(i)] is a good estimator to evaluate if a
regression model is optimal or not. Var[yi− ŷNN(i)] is minimal of the goodfitting
state. We are going to divide the proof into 3 possible cases: the model is
underfitting, the model is strongly overfitting and the model is optimal.

3.1 Strong Overfitting State

If the regression model is strongly overfitting then ŷNN(i) is tending to yNN(i)

and we can expend yi − ŷNN(i) using (2) as

yi − ŷNN(i) = yi − yNN(i) = (ỹi − ǫi) − (ỹNN(i) − ǫNN(i)) = ǫi − ǫNN(i). (3)
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So, we can calculate the variance of yi − ŷNN(i) as

Var[yi − ŷNN(i)] = Var[ǫi − ǫNN(i)] = 2σ
2. (4)

3.2 Underfitting State

In the case of underfitting, we have that ŷi = ỹi + αi with α a random variable
with zero mean and variance µ2. It can be rewritten as ŷi = yi − σi + αi and we
can expend yi − ŷNN(i) as

yi − ŷNN(i) = ŷi − αi + ǫi − ŷNN(i). (5)

For the number of samples that tends to infinity and using (1), we can rewrite
(5) as

yi − ŷNN(i) = −αi + ǫi. (6)

So, we can calculate the variance of yi − ŷNN(i) as

Var[yi − ŷNN(i)] = Var[ǫi − αi] = σ
2 + µ2. (7)

3.3 Goodfitting State

When the complexity of the regression model is optimal and if the number of
samples that tends to infinity, using (1), we obtain

yi − ŷNN(i) = (ỹi + ǫi) − ỹNN(i) = (ỹi − ỹNN(i)) + ǫi = ǫi. (8)

So, we can calculate the variance of yi − ŷNN(i) as

Var[yi − ŷNN(i)] = Var[ǫi] = σ
2. (9)

3.4 The NNBMSS is minimal for the Goodfitting State

The estimator Var[yi − ŷNN(i)] is minimal and tends to σ2 for the goodfitting
state, instead of 2σ2 for the strong overfitting state and σ2 + µ2 for the under-
fitting state. The NNBMSS evolves from σ2 to 2σ2 when the model is moving
from the goodfitting state through a moderate overfitting state to finally reach
a strong overfitting state. Therefore, minimizing Var[yi − ŷNN(i)] is a good
strategy to choose the complexity of a regression model. ◻

4 Experiments: NNBMSS VS 10-Fold Cross-Validation

The proposed method (NNBMSS) is tested on a well-known benchmark: the
Boston housing dataset. This dataset has been measured to predict the Median
value of owner-occupied homes in $1000’s [6]. This data consists in 506 samples
with thirteen different features including per capita crime rate by town, propor-
tion of residential land zoned for lots over 25,000 sq.ft. and average number of
rooms per dwelling. One third of the data is used as a test set in order to cal-
culate the test error of the selected models. This benchmark has been selected
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because the number is sample is small and therefore far from our asymptotic
assumption. For the matter of simplicity, the regression model that is used is
a Randomized Neural Networks (RNNs), which is a type of generalized Single-
Layer Feed-forward Network (SLFN) [7, 8, 9]. Any other regression model can
be substituted to RNNs. For RNNs, the complexity is defined by the number
of neurons in the single hidden layer. The proposed model structure selection
method (NNBMSS) is compared to 10-fold Cross-Validation [1, 2, 3] which is
one of the most used and most robust model structure selection techniques. The
selected number of neurons (complexity), the test error (obtained on the test
set) and the computational time are compared for the NNBMSS and the 10-fold
Cross-Validation. The experiments are repeated 100 times in order to assess the
variability of the results. Table 1 is summarizing the results.

Method Test error Comp. Time Selected Number of Neurons
10-fold CV 34.31 ±5.24 1.28 seconds 56.65 ±35.35
NNBMSS 30.24 ±7.02 0.16 seconds 104.30 ±21.06

Table 1: Results including the means (in bold, calculated over 100 repetitions)
and the standard deviations.

5 Discussion: Similar Selection but Faster

The results presented in the previous section show that the NNBSS method
is able to select the complexity of a regression model. The results obtained
with NNBSS and the 10-fold Cross-Validation are statistically similar, and we
are not claiming that the NNBSS method is selecting a better complexity than
the 10-fold Cross-Validation. Nevertheless, using 10-fold Cross-Validation is
approximately multiplying the computational time by 8.
Exact Nearest Neighbors algorithms have the following complexity: O(N logN).
In order to really take advantage of the NNBSS method, its utilization should be
restricted to regression methods that have similar or worse complexity. Examples
of such regression models include Multilayer Perceptrons using back-propagation
as part of their training algorithm like Deep Learning models. The complexity of
the training using back-propagation is the following : O(N4) [10, 11]. Another
class of algorithms that can be used (with the NNBMSS method) are Random
Forests which have the following training complexity: O(N2).
Similar results have been obtained with 5 other regression datasets from the
UCI repository. The NNBSS method is selecting similar complexities than the
10-fold Cross-Validation method, and the test errors for both selection method
at not statistically different. The NNBSS is on average 8 time faster than the
10-fold Cross-Validation method.

6 Conclusion and Further Work

The proposed method provides the complexity selection for any continuous re-
gression method. An asymptotic mathematical proof is detailed in this paper
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and the NNBMSS is illustrated on a regression benchmark.
The proposed method is much faster than the 10-fold Cross-Validation method.
The bottleneck of the NNBMSS is the search for the Nearest Neighbor of each
sample, but we believe that approximate Nearest Neighbors algorithms can be
used instead, in order to reduce the complexity and even reduce the compu-
tational time even further. In the future, in an extended journal version of
this paper, a analysis of the number of samples that is needed for both 10-fold
Cross-Validation and NNBMSS methods will be done. Furthermore, more re-
gression models (Radial Basis Function Networks, Deep Learning, Support Vec-
tor Machines and Random Forests) will be used on a larger number of datasets.
Finally, we will investigate the use of approximate Nearest Neighbor searches
(for example Locality Sensitive Hashing [12]) with a very large dataset. It will
be determined if approximate Nearest Neighbor searches still select the correct
complexity and if they reduce even further the required computational time.
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