
RecLVQ: Recurrent Learning Vector
Quantization

Jensun Ravichandran , Marika Kaden , and Thomas Villmann ∗

University of Applied Sciences Mittweida,
Saxon Institute for Comp. Intelligence and Machine Learning

Mittweida - Germany

Abstract. Learning Vector Quantizers (LVQ) and its cost-function-
based variant called Generalized Learning Vector Quanitzation (GLVQ)
are powerful, yet simple and interpretable classification models. Even
though GLVQ is an effective tool for classifying vectorial data, it cannot
handle raw sequence data of potentially different lengths. Usually, this
problem is solved by manually engineering fixed-length features or by em-
ploying recurrent networks. Therefore, a natural idea is to incorporate
recurrent units for data processing into the GLVQ network structure. The
processed data can then be compared in a latent space for classification
decisions. We demonstrate the ability of this approach on illustrative clas-
sification problems.

1 Introduction

GLVQ is a prototype-based sparse classification model that can be trained us-
ing gradient descent schemes. It constitutes a robust classifier based on data
dissimilarities optimizing the hypothesis margin [1]. On the other hand, it
is well known that recurrent architectures like the Long Short Term Memory
(LSTM) network [2] and Gated Recurrent Unit (GRU) [3] are powerful mod-
els to process sequential data. However, so far, GLVQ-type networks have not
been combined with recurrent networks even though there are obvious advan-
tages in doing so for sequence processing. RecLVQ provides a framework for
incorporating deep-recurrent neural networks into GLVQ to take advantage of
some desirable properties including good robustness and margin maximization
[1, 4]. Vector quantization utilizing a recursive structure has so far only been
investigated in unsupervised learning by applying Self-Organizing Maps (SOM)
[5, 6] for sequence processing where the SOM-structure is used to manage the
recursive data structure in sequences.

2 Related Work

Recently, it was proposed to incorporate prototype layers into deep neural net-
work architectures [7]. Previously, however, the research communities of vector
quantization and neural networks were perceived to be working on models that
were incompatible with each other. Bridging the gap between the communities
allows for the crossover of certain ideas between the two fields. An example for
such applied crossover is the use of Dropout [8] and DropConnect [9] for stability
estimation in the context of LVQ [10]. We strongly believe that the two fields

∗M.K. and J.R. are supported by grants of the European Social Fund (ESF).

281

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

have much to gain by adapting methods and techniques from each other in the
near future.

Outside the LVQ community, there has been recent interest in similar ideas to
incorporate prototype layers in recurrent networks. One such attempt is ProS-
eNet [11]. The main difference of our architecture as compared with ProSeNet
is the use of a Siamese structure. Yet another comparable network structure, al-
beit with a different loss function than GLVQ (explained in 3.1) was introduced
in [12]. However, because the prototypes are in the latent space, they propose
to additionally learn an inverse mapping that reproduces the prototypes in the
original space. We find this cumbersome and unnecessary, as the same can be
achieved quite elegantly by means of a Siamese architecture. Having said that,
learning such an inverse mapping might be useful for “generating” new data
samples by sampling from a low dimensional embedding space.

3 Modern Variants of Learning Vector Quantization

3.1 Generalized Learning Vector Quantization

In 1996, GLVQ [13] was proposed by introducing a loss function which was a
soft (differentiable) approximation to the misclassification error. In GLVQ, it
is assumed that the training set Xtrain = {(xk, yk)} consists of tuples of data

vectors xk ∈ Rnx and their respective class labels yk ∈ C = {ck}|C|k=1. A sim-

ilar set W = {(wk, λk)}|W|k=1 called the prototype set, consisting of trainable
prototype vectors wk ∈ Rnx and their respective class labels λk such that all
classes in the set C are represented, is also assumed. For the sake of conve-
nience, we will introduce a unified labeling function c which outputs the true
class labels for training data, i.e., c(xk) = yk and prototype labels in the case
prototypes, i.e., c(wk) = λk. The goal of GLVQ is then to distribute the pro-
totype vectors such that the class label of any new input x can be inferred by
means of a Winner-Takes-All Competition (WTAC) given by c(ws(x)) where
s(x) = argmink d(x,wk). This is achieved by minimizing the GLVQ loss func-
tion as given by:

L =
∑
Xtrain

f

(
d(x,w+)− d(x,w−)

d(x,w+) + d(x,w−)

)
(1)

where w+ is the closest prototype to x with a matching label such that c(x) =
c(w+), w− is the closest prototype to x with a non-matching label such that
c(x) 6= c(w+) and f is usually a monotonically increasing transfer function.

3.2 Generalized Matrix Leaning Vector Quantization (GMLVQ)

3.2.1 The Canonical Perspective of GMLVQ

One of the drawbacks of LVQ variants that use an unparameterized dissimi-
larity measure like the Euclidean distance for example is that they weigh all
input dimensions equally, which is an undesirable property for most practical
applications. One of the first attempts to address this problem was proposed
in [14] and the resulting LVQ scheme was called Generalized Relevance Learn-
ing Vector Quantization (GRLVQ). In GRLVQ, the distance measure itself is

282

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

adaptable along with the prototype vectors by means of gradient descent and a
so-called relevance profile describes the relevance (weightage) of each dimension
of the respective vector space where the input vectors and prototypes reside.
Soon however, it was realized that the relevance profile could be generalized into
a relevance matrix, and the resulting scheme was termed Generalized Matrix
Learning Vector Quantization (GMLVQ) as the distance measure now included
a full matrix of adaptable weights [15]. Here, the distance measure d(x,w) is
changed to be an adaptive distance measure of the form dΩ(x,w) = (Ω(x−w))2,
where Ω ∈ Rnm×nx is a matrix of adaptable parameters with the desired map-
ping dimension nm.

3.2.2 The Siamese Perspective of GMLVQ

Although the canonical GMLVQ scheme was contrived with the motivation of
generalizing on the idea of a relevance profile from GRLVQ, it turns out that
GMLVQ can be viewed quite differently. One such perspective, which we shall
call the Siamese perspective of GMLVQ is obtained by rewriting the distance
measure as dΩ(x,w) = (x̃ − w̃)2, where x̃ = Ωx and w̃ = Ωw is a linear
mapping of the data and the prototypes. Even though doing so is mathematically
trivial, it offers a vastly different perspective on closer inspection. Taking the
Siamese perspective, the distance measure becomes unparameterized with the Ω
matrix acting as a linear transformation of the data and the prototypes, before
being presented to the distance metric for measurement (see Fig. 1). Also notice
that the matrix Ω shares the trainable parameters even though it is used twice
in a single forward-pass through the network; once to embed the input x and
once to embed a prototype w. It turns out that this structure is known as a
“Siamese” network, albeit with one of the inputs being adaptable prototypes in
the case of GMLVQ.

The earliest mention of a Siamese network appeared in 1993 [16]. The original
motivation there was to transform two inputs into appropriate representations
before comparing them. Since then, numerous papers have appeared that use
the idea in many different ways. One of the inputs in such networks is usually
a pre-chosen anchor, against which the true input is compared. However, in
such cases, the errors are not back-propagated to the anchor to adapt it. The
anchor, once chosen, is kept fixed throughout the training procedure. There are
indeed two ways to make a network produce an output closer to the ground
truth for a given input: adapt the network weights, or adapt the input to the
network itself, by back-propagating the errors. We usually do not adapt the
inputs though, because they are given and fixed, except perhaps in cases such
as transfer learning or in finding an adversarial example.

3.3 RecLVQ

Recurrent architectures are powerful tools to process sequential data. In this sec-
tion, we provide the RecLVQ framework for incorporating recurrent structures
in GLVQ-type networks, starting with GMLVQ, taking again a Siamese per-
spective. RecLVQ replaces the linear mapping block with a recurrent processing
unit taking a sequence input x and outputting Rec(x). One choice for the Rec
block could be an LSTM network (see Fig. 1). Obviously, a recurrent model

283

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Fig. 1: On the left is the Siamese perspective of GMLVQ showing the shared
mapping. On the right is a Siamese RecLVQ Network showing the connections
between the constituent layers, including the shared recurrent mapping. Here
the recurrent structure is chosen to be an LSTM layer for illustration.

such as LSTM has shared parameters across time steps in the input sequence.
However, in the Siamese setting, these parameters are additionally shared across
the two input branches of the network. With this, it now becomes plausible to
map input sequences and prototypes of various sequence lengths to a fixed latent
representation of chosen length before determining distances for the WTAC. To
this end, the latent representation could be chosen as the hidden state of the
LSTM cell from the last time step, for example. Another possibility is to use
the concatenated cell outputs from the last timestep(s). We emphasize that the
network illustrated in Fig. 1 is but one of many possible network configurations
that the framework allows. Bidirectional LSTM networks, deep LSTM networks
and combinations there of, are all plausible within the RecLVQ framework. The
essential pieces of RecLVQ are a recurrent structure such as LSTM, a differ-
entiable distance measure and the GLVQ loss function from Eq. (1) connected
together in a Siamese fashion with shared weights for recurrent mapping. As
long as these essential ingredients are present, it is possible to mix and match
other differentiable functions into the network configuration as needed. One can
think about the LSTM-unit as a kind of data processing to embed the sequence
into an embedding space. In this embedding/latent space, GLVQ works as usual
with guaranteed robustness [17, 18]. Moreover, the interpretability of GLVQ is
kept partially, at least.

4 Experiments

We trained a RecLVQ mode with a deep bidirectional LSTM backbone, on the
MNIST dataset to 98.5% accuracy on the test benchmark using only one pro-
totype per class. We chose this dataset not necessarily because we believe that
the rows of the images in the MNIST dataset are sequentially generated (al-
though it is not a completely unreasonable assumption given that the digits are
hand-drawn), but because it allows us to demonstrate the model on a sufficiently
large dataset whilst still being able to visualize the high-dimensional prototypes

284

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Fig. 2: RecLVQ prototypes after training on the MNIST dataset.

Fig. 3: On the left are the Tecator prototypes visualized as spectra after training
and on the right is a visualization of the corresponding 2D-latent space of the
Tecator data and the prototypes.

as images on paper. Another reason for this choice is that interpretability is a
domain-specific notion that requires domain-expertise to be able interpret the
prototypes using case-based reasoning. Our assumption here being that the
readers are experts at recognizing hand-drawn Arabic-numerals.

We also trained a RecLVQ model on the Tecator dataset [19] to 100% on the
test benchmark. Each data sample here consists of a 100 channel absorbance-
spectrum measured from meat samples and the task is to categorize the data
samples as either “High-Fat” or “Low-Fat”. The learned-prototypes (as spectra)
and the two-dimensional latent embeddings are both visualized in Fig. 3. In-
terpreting the prototypes here however, is unfortunately not as straight-forward
and we shall not attempt to do so.

5 Conclusion

In this paper, we have proposed the use of a Siamese network structure to re-
currently process sequential data of potentially varying lengths for classification
tasks using prototype-modelling along with an explicit WTAC competition. In
the experiments, we empirically show that it is plausible to learn prototypes for
the different classes by backpropagating the errors through recurrent structure

285

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

in the model. As the next step, we intend to apply our proposed method to
study DNA/RNA sequences. It is worth noting that models like GMLVQ are
fully interpretable in that all layers in those networks lend themselves naturally
to human interpretation. In RecLVQ however, the recurrent structure still re-
mains a black-box. Eventhough RecLVQ is not fully interpretable in the same
fashion as GLVQ or GMLVQ, it may be a reasonable price to pay for certain
applications.

References

[1] K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin analysis of the LVQ
algorithm. In NIPS, 2002.

[2] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9,
1997.

[3] D. Bahdanau, K. H. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. In ICLR, 2015.

[4] S. Saralajew, L. Holdijk, and T. Villmann. Fast adversarial robustness certification of
nearest prototype classifiers for arbitrary seminorms. In NeurIPS, 2020.

[5] T. Voegtlin. Recursive self-organizing maps. Neural Networks, 15:979–991, 2002.
[6] B. Hammer, A. Micheli, A. Sperduti, and M. Strickert. A general framework for unsu-

pervised processing of structured data. Neurocomputing, 57:3–35, 2004.
[7] S. Saralajew, L. Holdijk, M. Rees, and T. Villmann. Prototype-based neural network

layers: incorporating vector quantization. arXiv preprint arXiv:1812.01214, 2018.
[8] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[9] L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural
networks using dropconnect. In ICML (3), volume 28 of JMLR Workshop and Conference
Proceedings, pages 1058–1066, 2013.

[10] J. Ravichandran, M. Kaden, S. Saralajew, and T. Villmann. Variants of dropconnect in
learning vector quantization networks for evaluation of classification stability. Neurocom-
puting, 403:121–132, 2020.

[11] Y. Ming, P. Xu, H. Qu, and L. Ren. Interpretable and steerable sequence learning via
prototypes. In KDD, pages 903–913, 2019.

[12] O. Li, H. Liu, C. Chen, and C. Rudin. Deep learning for case-based reasoning through
prototypes: A neural network that explains its predictions. In AAAI, pages 3530–3537,
2018.

[13] A. Sato and K. Yamada. Generalized learning vector quantization. In NIPS, pages 423–
429, 1995.

[14] B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural
Networks, 15(8-9):1059–1068, 2002.

[15] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in learning vector
quantization. Neural Computation, 21:3532–3561, 2009.

[16] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. Signature verification using
a siamese time delay neural network. In NIPS, pages 737–744, 1993.

[17] M. Biehl, B. Hammer, and T. Villmann. Prototype-based models in machine learning.
Wiley Interdisciplinary Reviews: Cognitive Science, 7:92–111, 2016.

[18] S. Saralajew, L. Holdijk, M. Rees, and T. Villmann. Robustness of generalized learning
vector quantization models against adversarial attacks. In Advances in Intelligent Systems
and Computing, volume 976, 2020.

[19] Tecator dataset. http://lib.stat.cmu.edu/datasets/tecator, 1995. Contained in
StatLib Datasets Archive.

286

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

http://lib.stat.cmu.edu/datasets/tecator

	Introduction
	Related Work
	Modern Variants of Learning Vector Quantization
	Generalized Learning Vector Quantization
	Generalized Matrix Leaning Vector Quantization (GMLVQ)
	The Canonical Perspective of GMLVQ
	The Siamese Perspective of GMLVQ

	RecLVQ

	Experiments
	Conclusion

