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Abstract. During each flight, an aircraft engine sends data to a ground
system. This data corresponds to different sensors measurements (tem-
peratures, pressures, vibrations...) collected at key moments of the flight.
It constitutes rich multivariate time series used to monitor the engine’s
health. In this article, we used flight data to predict the main removal
cause of the engine. The problem falls within the framework of time se-
ries classification. This article proposes an interpretable neural network
architecture which fits with the physical understanding of the modeled
phenomenon in order to address the problem on a real-world, industrial
dataset.

1 Introduction

A shop-visit consists in removing an engine from the aircraft to perform a large-
scale maintenance operation. Shop-visits, which happen every 10 to 15 years for
each engine, are major events that need to be well understood and anticipated
by the engine manufacturers. Every shop-visit event is driven by a main removal
cause. Main removal causes include continuous deterioration of any major mod-
ule of the engine (combustor, compressor, turbine...) or any punctual event like
bird ingestion, destroying many parts of the engine at once. Each shop-visit can
be associated to its main removal cause using exogenous data provided by the
airlines. This process is called shop-visit classification.

Additionally, the aircraft engine sends endogenous data to a ground system at
each flight. Typically this data contains temperature, pressure, rotation speed,
or vibration measurements, collected by sensors along the engine at different key
moments of the flight. These extremely rich multivariate time series are used to
monitor the engine’s health.

In this article, we evaluated the opportunity to use only endogenous flight
data to ease the shop-visit cause classification process using deep learning mod-
els. Our problem is thus the classification of multivariate time series.

We are tackling a hard problem. To illustrate some of the specific difficulties
related to the processing of real-world flight data, one can refer to the work
of [1]. First of all, no human would be able to do this task easily, even with a
lot of expertise on the engine: as mentioned, the removal cause classification is
usually achieved using external data. Secondly, our time series are extremely
noisy. A large part of the variance is due to changes in flight conditions, yet
another is explained by evolution of the engine’s health state. This last part of
the variance is the one we are interested in catching.

629

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



2 Related work

In the literature the Time Series Classification (TSC) problem is mostly driven
by Human Activity Recognition [2] applications: the purpose is to recognise the
types of movements that a human has made based on sensor data.

Historically, signal processing methods were used to manually extract rele-
vant features from the time series. However, those feature engineering methods
require a lot of expertise and a priori understanding of what relevant features
are. In our case, since flight data are not usually used for the task of shop-visit
classification, we lack this human inferring expertise. This is where deep learning
becomes a true opportunity.

In their reviews of existing deep learning approaches for end-to-end TSC
tasks, [3] and [4] note that CNN architectures are usually favoured, thanks to
their robustness and the relatively low training time required. Many variants of
CNN are explored: for instance, the Multi-Channel CNN [5] makes convolution
operations on each variable of the multivariate series separately, whereas Deep-
ConvLSTM [6] is a hybrid model seeking to combine the advantages of CNN and
LSTM by replacing the last dense layers of a classic CNN with recurrent ones.

Recurrent Neural Networks (RNN) such as LSTM [7] are another option
when dealing with temporal data. However, RNN are not well suited for long
time series: the bigger the time range, the slower and the harder they are to
train. Moreover, if the entirety of the time series is relevant for the classification,
the “loosing memory” property of RNN is not adapted.

Finally, neural networks are known to work as black boxes, which is a sub-
stantial drawback in an industrial context. To address this issue, [8] proposed
to take advantage of the mathematical properties of a layer called Global Av-
erage Pooling (GAP) to build Class Activation Maps (CAM), i.e. heat maps
that highlight which regions in the input data have contributed the most in the
classification decision of the network. This methodology was initially thought
to work for images, but [9] adapted the principle to temporal data. In our fi-
nal architecture, we took advantage of these layers to interpret our results (see
Section 4).

3 Data description and methodology

3.1 Data description

In our raw data set, we have 1367 classified shop-visits. A shop-visit can happen
at any time during the life of an engine. There are 6 possible shop-visit causes
(i.e 6 classes). Their distribution, detailed in Table 1, shows that our data is
heavily unbalanced. Section 3.3 gives details on how this issue was handled.

For each sample, we have a multivariate time series of 500 time stamps,
corresponding to the last 500 flights with available data before engine removal.

At each time step, we have a measurement over 10 sensors (temperatures,
pressures, vibrations...) at two different flight phases: one measure at Takeoff
and one at Cruise. However, Takeoff and Cruise data should not be melted too
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Cause Mod. 1 Mod. 2 Mod. 3 Mod. 4 Perf. Ext. event
Nb of samples 721 147 140 131 129 99

Table 1: Class distribution. Mod. stands for module, an ensemble of parts; Perf.
for performance, a global performance degradation of the engine; Ext. event, an
external one-off event damaging the engine.

lightly, since it would not make sense physically. We are therefore looking for a
network architecture aligned with this internal structure of the data. The 10×2
sensors data is completed with one last variable containing the age of the engine
at each flight. Hence we have 1367 time series in a 21 dimensional space, each
one labelled by the terminal event. An example of one sensor time series can
been seen on Figure 3 in the CAM interpretation section.

All variables are centered and standardised. The missing data (circa 17 %)
are imputed with a linear interpolation. No other pre-processing step was
needed. In particular, we have glitches and outliers in the time series (see Fig-
ure 3 for an example of glitch). We rely on the network to learn how to properly
handle those anomalies.

3.2 Summary of the CNN architecture

Our global methodology is presented on Figure 1 and can be summarised as
follows.

First of all, we train one network per cause. We have thus n = 6 networks
with all exactly the same architecture: each network is specialised in the recog-
nition of one cause i against the n− 1 others (this architecture is later referred
to as “6x Conv2D” architecture). Note that our first attempt was to train a
single network directly deciding the removal cause (referred to as “1x Conv2D”
architecture). This, however, gave unsatisfying results (worse than random: see
Table 3 for details). Having one network per cause also eases the interpretation
of the results (see Section 4).

Afterwards, we use the outputs of the n networks, i.e. the probabilities esti-
mated by each network for their given removal cause, to vote for the most likely
one. We tested a highest probability voting method (“6x Conv2D & Highest
Probability”). The most successful strategy was however use the n outputs to
train a dedicated Support Vector Machine (“6x Conv2D & SVM” method).

As for the precise architecture of each cause-specialised network: encouraged
by our literature review in Section 2, we build CNNs. We make convolution
operations in 2D, so as to allow convolutions along the “sensors” axis (since
we have a lot of correlation between variables). We also force the convolution
kernel to cover all of the parameters axis, so as to allow convolutions between
all sensors. The use of padding enables to preserve information, in particular as
we get close to the end of the time series, i.e. the engine removal.

In order to analyse Takeoff and Cruise data separately, the networks have two
parallel branches: each is specialised in the creation of features for its own flight
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phase. Each branch has the same architecture, detailed on Figure 2. They are
composed by two steps of {convolution, batch normalisation, ReLu activation},
followed by a Global Averaging Pooling layer to allow the generation of CAMs
for interpretability. Then, a dense layer in each branch makes a classification
decision. At the end, the results from the two branches are concatenated and a
last dense layer makes the final decision.

Fig. 1: Global classification algorithm architecture. Left hand part shows the
architecture for one cause classification. Right hand part shows the global ar-
chitecture with one network per cause and a SVM for final classification.

Fig. 2: Detailed CNN architecture for one phase (Takeoff or Cruise) branch. For
each layer, one can read the detail of the architecture.

3.3 Training strategy

As presented in Section 3.1, the raw dataset is unbalanced. However, we chose to
use a balanced testing set with 20 samples per class (120 samples). The remain-
ing sample (about 90 % of the dataset) used for training stays unbalanced, yet,
within the learning procedure, we force each batch to be balanced along causes.
Each batch is bootstrapped out of the training dataset with the same pickup
probability for each cause. This process is repeated 5 times for cross-validation.
Here the cross-validation procedure is absolutely necessary to evaluate the pre-
cision of our results because our labeled dataset is relatively small with regard
to its variability (see Table 3).

The stochastic gradient descend is optimised with an Adam algorithm with a
learning rate of 1.e−2. Each of the 40 epochs consists in a succession of 20 batches.
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4 Results and interpretation

As stated previously, the “6x Conv2D & SVM” methodology turns out to per-
form the best, with an accuracy of 42.3 %. The confusion matrix obtained is
presented in Table 2. A comparison of the different methods is also recorded in
Table 3.

Predictions
Mod. 1 Mod. 2 Mod. 3 Mod. 4 Perf. Ext. ev Total

O
b

se
rv

at
io

n
s Mod. 1 10.8 1.6 2.2 2.0 2.2 1.2 20

Mod. 3 2.2 9.0 2.4 2.2 1.6 2.6 20
Mod. 4 5.6 2.2 4.4 3.6 1.2 3.0 20
Mod. 3 3.6 0.8 2.2 6.8 1.6 5.0 20
Perf. 1.6 2.2 1.4 1.2 11.4 2.2 20

Ext. ev 1.4 3.0 2.4 3.6 1.2 8.4 20

Total 25.2 18.8 15.0 19.4 19.2 22.4 120

Table 2: Confusion matrix for model “6x Conv2D & SVM” with 5-fold cross-
validation. Lines correspond to true classes, columns to predicted ones.

Methodology Mean acc. (%) Min-max acc. (%)
Random baseline 16.7 –

1x Conv2D 13.3 8.3–16.7
6x Conv2D & Highest Probability 39.7 35.0–45.0

6x Conv2D & SVM 42.3 38.3–47.5

Table 3: Accuracy comparison on test set (5-fold cross-validation)

We generated CAMs to check if the networks use a somewhat physically
understandable decision process. The results are mostly conclusive. Figure 3
gives an example for an engine which was removed to restore its performance:

(a) The Perf. model considers the long period of time during which the per-
formance variable has been low, which is exactly what this cause is linked
to physically.

(b) The External event model only looks at the sudden parameters shift to-
wards the end of the time period. It is consistent with what external events
should correspond to.

5 Conclusion and future works

In this work we tackled a very challenging classification problem with real-world
flight data. Few pre-processing steps (standardisation and missing data imputa-
tion only) were needed before feeding a well-chosen convolutional neural network
to perform a classification task that humans, even with a lot of expertise on the
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(a) As analysed by the Perf. model (b) As analysed by the Ext. event model

Fig. 3: Examples of Class Activation Maps for a key performance variable at
Takeoff, for an engine removed for the cause Performance

engine, would not be able to do. The chosen architecture is adapted to our
physical understanding of the modeled phenomena, and the resulting network is
interpretable and makes sense to domain experts. Our work also corroborates
with literature, by confirming that CNN architectures are well adapted to our
type of data and quick to train (about 30 minutes).

Future work will rely on this experience to solve other problems with the
same data using deep neural networks. The open problems include classification
of maintenance efficiency and modeling of the engine deterioration speed.
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