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Abstract. The notion of concept drift refers to the phenomenon that
the data distribution changes over time. If drift occurs, machine learning
models need adjustment. Since drift can be inhomogeneous, suitable ac-
tions depending on the location in data space. In this paper we address
the challenge to partition the data space into segments with homogeneous
drift characteristics. We formalize this objective as an independence cri-
terion, and derive a robust and efficient training algorithm based thereon.
We evaluate the efficiency of the method in comparison to existing tech-
nologies: the identification of drifting clusters, and the estimation of a
conditional density distribution.

1 Introduction

Data from the real world such as social media entries or measurements of IoT
devices are subject to continuous change [1, 2]. Here concept drift can be
caused by seasonal changes, changed demands, ageing of sensors, etc. Since
the characteristics of drift might induce severe problems of the accuracy of
machine learning models, it is important to understand the nature of drift. In
recent years, quite a few approaches were proposed to deal with concept drift
[3, 4]. These range from non-parametric methods over gradient techniques up
to ensemble technologies for dealing with streaming data [5]. In addition to
model adaptation schemes, a large number of methods aims for a detection of
drift, an identification of change points in given data sets, or a characterization
of overarching types of drift [6, 7]. Currently, only few methods aim for a
more detailed analysis of the spatial characteristics of drift [4, 8]. These are
restricted to an analysis of the drift behavior for two consecutive time points
corresponding to abrupt drift. As concept drift can happen in different ways
[9], such as abrupt vs. gradual, periodic vs. nonrecurring, slow vs. fast drift, a
more general analysis of the spatial peculiarities of drift would be desirable.

The aim of the present work is to uncover the spatial structure of drift by
segmenting the observed data into spatial regions which possess an identical or
comparable drift characteristics. We will provide a formal definition of such
drift segmentation by referring to a suitable formalization in terms of condi-
tional independence. We provide a non-parametric, linear time segmentation
algorithm based on this formalization, and we show its practical relevance in a
number of benchmarks for downstream tasks, comparing the result to state-of-
the art methods. This paper is organized as follows: In the first section we recall
the definition of concept drift, provide the definition of drift segmentation, and
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compare it to other notions. Then we present two approaches to the segmen-
tation problem in section 3 – we relate the first one to existing methods from
decision tree learning and we provide a proof of correctness for the other. In
section 4 we compare our approaches to other methods form the respective fields
as regards their capability of detecting regions of change, and their suitability
as preprocessing methods for conditional density estimation.

2 Problem definition

In classical machine learning one considers a generative process p on the sample
space X . A data point is an instance of a random variable X ∼ p. Many
processes in real-world applications are time dependent. One prominent way
to to take time into account, is to consider a family of probability measures
pt on X , indexed over a set T , representing time. Probabilities pt can change
over time. Concept drift takes place if pt �= ps for at least one pair t �= s [9].
One powerful mathematical modeling of such drift processes has been suggested
in [10]: one considers random variables (X,T ) ∼ P(X,T ) representing data and
time respectively, with an underlying joint distribution P(X,T ), whereby the T -
valued random variable T yields the conditional distribution PX|T=t = pt. It
has been shown in [10] that drift is uniquely characterized by the statistical
dependence of X and T .

We aim for drift segmentation as a decomposition of the space of observations
X into regions with the same drifting behavior. As an example, consider sports
news, and assume a soccer club A newly joins premier league. Then, news which
are not concerning soccer or the home town of A are likely not affected by the
drift, while news concerning premier league or news about the home town of A
are likely affected. Thus, we would aim for a decomposition of news into three
subparts in this case: premier league, home town of A, and the rest. The setting
might be more complex, if we consider a longer time period. In mathematical
terms, we can formalize this intuition in terms of a decomposition of the space
X which leaves the observed probabilities invariant as follows:

Definition 1. Assume we are given a drift process (X,T ) ∼ P(X,T ). A drift
segmentation of (X,T ) is a measurable map L : X → N, which assigns each
element of x ∈ X an index L(x) corresponding to the segment it belongs to, such
that PT |L(X) = PT |X . A segmentation is optimal if L := L(X ) = {l1, ..., ln} is
finite and the number of segments n is minimal. We obtain a partition of X
into segments by considering the preimages {x ∈ X | L(x) = li} of L.

This definition can be interpreted as grouping all points with the same drift-
ing behavior in the same segment and be rephrased as follows:

Lemma 1. Let L : X → N. Then L is a drift segmentation if and only if T
and X are independent given L(X), i.e. T �X|L(X).

Proof (sketch). Since L is deterministic, it holds PT |X = PT |X,L(X). Further-
more, we have PT |X,L(X) = PT |L(X) if and only if T �X|L(X).

Hence, a finite minimal drift segmentation does not necessarily exist. How-
ever, every distribution can be arbitrarily good approximated by one that admits
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a finite drift segmentation, and finite observational data can always be modeled.
Up to our knowledge, drift segmentation has not yet been considered in this
form in the literature. However, the notion is closely related to the following
two objectives, for which benchmarks exist:

Drift localization: Drift localization as addressed in [4] aims for an identifi-
cation regions where drift occurs, i.e. elements x ∈ X such that pt(x) �= ps(x) for
some time points t �= s. Drift segmentation constitutes a generalization of drift
localization as it does not only identify the regions where drift occurs, but it
also groups them according to their drift characteristic over possibly longer time
period. Existing approaches for the localization of drift are typically limited to
a single change point [11, 12] or supervised setups [13].

Conditional density estimation: Conditional density estimation PY |X for
a real-valued variable Y constitutes a prominent problem, which can be ad-
dressed with conditional kernel density estimates or least squares approaches,
for example [14, 15, 16]. By identifying Y and T , drift segmentation can serve
as a preprocessing step for conditional density estimation: a drift segmentation
yields a decomposition of X into regions without local dependence of X and T ,
hence we obtain approximately X-invariant local distributions of T within these
segments. Thus, the inference of PT |X boils down to an unconditional density
estimator on the data contained in the respective region PT |L(X).

3 Efficient methods for drift segmentation

In the following we will assume X = R
d and T = [0, 1]. Albeit the criterion of

conditional independence allows us to check whether a given partition is suitable
as drift segmentation, the criterion does not provide a good strategy like the
simple greedy approach of successively splitting Rd at the most suitable position,
as is illustrated by the following example: Assume X,T ∼ 1

3 (δ(0,0) + δ(1, 12 ) +

δ(2,1)), where δx denotes the Dirac-measure concentrated at x. Here, any single
split keeps X and T dependent. Therefore, we aim for a different approach: we
search for a split into l1 and l2 such that distributions PT |X∈l1 and PT |X∈l2 are
as different as possible.

3.1 A mean value approach

Comparing distributions can be done by a reference characteristic such as the
expectation of T . That means, we aim for a split l1, l2 such that E[T |X ∈ l1]
and E[T |X ∈ l2] differ significantly. This task can be performed using Welch’s
t-test. Note that, there is a close connection between this test approach and
the usual variance reduction gain used in regression trees:√

IV (l1, l2) =

√
nm

n+m
|Ê[T |X ∈ l1]− Ê[T |X ∈ l2]|,

where n,m are the number of samples in the respective subset. Normalizing
the right hand side by (v̂ar(T |X ∈ l1)/n + v̂ar(T |X ∈ l2)/m)

1
2 we obtain the

statistic of Welch’s t-test (up to a sign). Hence, the main difference between
both strategies is that the latter also takes certainty regarding the statistical
stability of the estimated quantity into account.
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3.2 Kolmogorov splitting

The restriction to expectations has major limitations. As an example, consider
(X,T ) ∼ 1

2 (δ0 ×N (0, 1) + δ1 ×N (0, 2)) which yields E[T |X = x] = 0 for every
x, but there is a reasonable splitting between X = 0 and X = 1. To overcome
this problem we make use of the classical Kolmogorov-Smirnov test, a non-
parametric two-sample test of the equality of continuous one-dimensional real
valued distributions. Its statistic is based on the difference between empirical
distribution functions. For realizations (x1, t1), ..., (xN , tN ) of (X,T ), ordered
such that ti ≤ ti+1, one can compute the statistic of the Kolmogorov-Smirnov
test for a split l1, l2 as∥∥∥F̂T |X∈l1 − F̂T |X∈l2

∥∥∥
∞

= max
1≤k≤N

∣∣∣∣∣kn − N

n · (N − n)

k∑
i=1

Il2(xi)

∣∣∣∣∣ ,
where n is the number of samples in l1, IA is the indicator function, and F̂ the
empirical distribution function. Note that, this is the only estimate needed to
compute the p-value. Since it is sufficient to sort the data once at the beginning,
a quasilinear O(N logN) run time results for the construction of a complete
decision tree for concept drift segmentation. In the following, we will use a
classical decision tree algorithm to grow a decision tree similar to e.g. CART
but using the p-value of the Kolmogorov-Smirnov test as split criterion. We
refer to this model as Kolmogorov trees. Such trees allow a drift segmentation:

Theorem 1. If the algorithm of CART, Random Forest or Extra-Tree is used
with Kolmogorov splitting as split criterion, then the obtained trees admit arbi-
trarily good segmentation. This means that for all ε > 0 there exists a tree with
leaves L, such that E[‖FT |L(X) − FT |X‖∞] < ε assuming a sufficient amount of
data is present, and such trees are the result of the proposed algorithm.

Proof (sketch). Let n ∈ N be such that 4/n < ε. Find a tree that approximates
the quantiles 1/n, 2/n, ..., (n − 1)/n sufficiently well, using the algorithm. The
result follows from the triangle inequality.

Early stopping: Flat decision trees reduce the computational complexity
during the prediction phase and increase the generalization ability, but result in
less flexible decision rules. As Kolmogorov information gains are p-values, the
growths of a tree can be stopped, if all splittings are above a critical threshold:
this indicates homogeneous regions such that no further splitting is needed.

4 Experiments

To evaluate our approach we consider two experimental settings, drift local-
ization and conditional density estimation. We compare to state-of-the-art al-
gorithms from these fields. We use forests of 20 Extra-trees grown with Kol-
mogorov split and early stopping at p = 0.01.

Drift Localization / Segmentation: We use our method for the task of
drift localization given the presence of drift has been detected at a specific time
point [4]. For Kolmogorov trees, regions of drift can be identified as those leaves
for which the ratio of samples before and after the detected time of drift differs

44

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



Table 1: Experimental results over 200 runs. Mean accuracy and standard
deviation are shown. Significantly (p = 0.01) better results are printed boldface.
n is the number of noise dimensions, cpt is the number of clusters per time.

cpt n Kolmogorov k-NN LDD-DSI kdq-Tree
9 0 0.87(±0.09) 0.86(±0.07) 0.60(±0.03) 0.78(±0.11)
9 1 0.86(±0.11) 0.75(±0.07) 0.49(±0.06) 0.70(±0.09)
18 0 0.73(±0.09) 0.78(±0.05) 0.60(±0.03) 0.72(±0.08)
18 1 0.74(±0.09) 0.69(±0.04) 0.48(±0.06) 0.66(±0.06)
18 5 0.71(±0.10) 0.58(±0.01) 0.37(±0.02) 0.48(±0.05)

from 1. We compare our method to LDD-DSI [11], which refers to the local
density between two time windows using a nearest neighbour approach, and
kdq-trees [12], which splits the data beforehand and then checks the respective
leaf-regions for drift. We also consider k-NN with optimal (post hoc) ratio. We
use standard parameters for all methods.

For an evaluation we use artificial data with ground truth, induced by a given
cluster structure. While drifting clusters either appear (T = 1) or vanish (T = 0)
at the given time point, non-drifting cluster have a uniform propbability before
and after the drift, i.e. P(T = t) = 1

2 , t ∈ {0, 1}. Different cluster numbers
and dimensionality were used. The latter add noise to the two-dimensional
cluster structure. The task is now to decide, whether a sample belongs to
a cluster that is drifting, or not. Note that, in this setup, drift localization
and segmentation coincide. The results are displayed in Table 1. Kolmogorov
trees yield superior results. k-NN is strongly affected by noise. kdq-trees have
problems in particular for a larger number of clusters. LDD-DSI is overall weak.

Conditional density estimation: We use Kolmogorov trees for conditional
density estimation in supervised regression problems, using three benchmarks
from UCI and one from [17] (see Table 2). Kolmogorv trees are used by en-
hancing leaf nodes with standard (unconditional) kernel density estimates. As
reference methods, we use conditional kernel density estimates [14, 15], and
least squares methods [16, 15] which model the conditional density as a mixture
model and which are also used in (supervised) drift detection [18]. In addi-
tion, we use standard regression trees. Hyperparameters are optimized using
cross validation. The results are displayed in Table 2. As can be seen the tree
based approaches perform best. MSE performs particularly well if a high cor-
relation between density and mean can be observed; Kolmogorov trees perform
particularly well for heterogeneous data sets.

Table 2: Experimental results over 200 runs. Table shows mean negative log-
likelihood and standard deviation. Significantly (p = 0.01) better results are
printed in bold face. Number in brackets denotes the number of “pearls”.

Kolmogorov LS-CDE MSE ε-KDE
boston 0.45(±0.04) 0.65(±0.10) 0.44(±0.06) 1.17(±0.05)
california housing 0.83(±0.03) 0.89(±0.04) 0.74(±0.04) 1.05(±0.03)
diabetes 1.11(±0.03) 1.18(±0.05) 1.08(±0.04) 1.73(±0.05)
Gauss necklace (3) 1.25(±0.03) 1.29(±0.04) 1.31(±0.04) 1.46(±0.05)
Gauss necklace (6) 1.22(±0.02) 1.25(±0.03) 1.31(±0.04) 1.43(±0.04)
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5 Discussion

In this work we introduced a new way to tackle concept drift by formalizing
drift segmentation as the challenge to decompose the observational space into
homogeneous regions as regards underlying drift characteristics. We derived a
new information criterion to judge according splits, based on which an efficient
tree segmentation algorithm has been derived. We showed the usefulness of
this criterion for two different application areas and explored its properties in
empirical experiments.
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Zäıane, and Zhanhuai Li, editors, Advanced Data Mining and Applications, pages 42–55,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[14] P. Hall, R. C. L. Wolff, and Q. Yao. Methods for estimating a conditional distribution
function. Journal of the American Statistical Association, 94(445):154–163, 1999.

[15] J. Rothfuss, F. Ferreira, S. Walther, and M. Ulrich. Conditional density estimation with
neural networks: Best practices and benchmarks. arXiv:1903.00954, 2019.

[16] M. Sugiyama, I. Takeuchi, T. Suzuki, T. Kanamori, H. Hachiya, and D. Okanohara.
Conditional density estimation via least-squares density ratio estimation. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages
781–788. JMLR Workshop and Conference Proceedings, 2010.

[17] L. Fischer, B. Hammer, and H. Wersing. Optimal local rejection for classifiers. Neuro-
computing, 214:445–457, 2016.

[18] L. Bu, C. Alippi, and D. Zhao. A pdf-free change detection test based on density
difference estimation. IEEE Transactions on Neural Networks and Learning Systems,
29(2):324–334, 2018.

46

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  


	Introduction
	Problem definition
	Efficient methods for drift segmentation
	A mean value approach
	Kolmogorov splitting

	Experiments
	Discussion



