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Abstract.  Spectral clustering is a clustering paradigm that has been
shown to be more effective in finding clusters with non-convex shapes than
some traditional algorithms such as k-means. However, this algorithm is
not directly applicable when the data is naturally distributed in different
locations, as it happens in many Internet of Things scenarios. In this
work, we propose a distributed spectral clustering to create a cooperative
federated model to deal with those cases in which the data is distributed
in different sites and with data privacy concerns. We demonstrate that
sharing a minimal amount of information allows this distributed version
of the spectral clustering to achieve good behavior for clustering several
synthetic data sets.

1 Introduction

Clustering is one of the most widely used techniques for exploratory data analysis
with wide ranging applications. Clustering algorithms identify groups of objects
(clusters) taking into account some similarities inherent among them. Different
types of clustering methods have been proposed in the literature and they are
classified mainly in three categories: hierarchical, density and partitioning tech-
niques. Hierarchical clustering arranges objects in a hierarchy with a treelike
structure based on the distance or similarity between them. Clusters are formed
by iteratively dividing the patterns using a top-down (agglomerative) or a bot-
tom up (divisive) approach. Density methods try to identify clusters as dense
regions in the data space, separated by regions of lower point density. Finally, in
the case of partition clustering methods, data are assigned into a concrete num-
ber of clusters, without any hierarchical structure, thanks to the optimization of
some criterion function. K-means is one of the simplest and most used partition
techniques [1].

Among all the methods, Spectral Clustering (SC) [2, 3] has become one of
the most popular techniques. This method constructs a similarity graph from
the raw data and then tries to find groups of data connected by high-weight
edges (clusters) separated by low-weight edges from the other groups on the
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graph. This technique often outperforms traditional clustering algorithms since
it does not make strong assumptions on the form of the clusters. However,
spectral clustering is not suitable to deal with large data sets due to the high
computational cost and memory usage needed to calculate the similarity graph
between all the data points [4]. Few proposals have been presented to alleviate
this problem, the most prominent is the one by Chen et al. [5], which presents
a parallel calculation method based on the use of a sparse similarity matrix.
This is a very beneficial proposal to scale up the clustering process using several
computing nodes, but it assumes that any data can be accessed from any node
in the parallel system. This can be a problem if, for data privacy reasons, it is
not desirable to share data between nodes.

In this work, we propose a Distributed Spectral Clustering (DSC) to create
a cooperative federated model to deal with those cases in which the data is
naturally distributed in different locations (devices), as it usually happens in
many scenarios, for example, of Internet of Things (ToT). This approach allows
privacy issues to be handled with a minimum amount of private data to be
released. This can be also used to speed up the computation of a centralized
spectral clustering by introducing execution parallelism among multiple cores.

2 Proposed method

Let’s assume that the data set is distributed among n nodes or devices, as it
could happen in the IoT scenario shown in Figure 1, where the spectral clustering
should be performed. The goal of this work is to develop a learning algorithm
that is able to obtain a single collaborative clustering model in this distributed
scenario without having to send all the local data from the nodes to a centralized
location. This would significantly reduce the network traffic and the need to
share, potentially private. Besides, as mentioned, applying a centralized SC
method on a large amount of data might not be feasible.

Edge device #1 Edge device #2 Edge device #n
%{ %ﬂ %{
= = =
Local data set Local data set Local data set
(D) (D) (D,)

| | I

Data communication network

Fig. 1: Network of IoT devices containing local data sets

Spectral clustering method transforms the clustering problem into the spec-
tral decomposition of Laplacian matrix (similarity matrix). First, it constructs
this matrix from the data set, obtains the first k-eigenvectors to create a new
data feature space, and then use k-means to cluster data in the eigenvector space.

424



ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

The clustering results are mapped back to the original space. To perform a dis-
tributed spectral clustering the locally obtained centroids for the eigenvectors of
each node would be shared, to later perform a global grouping using the local
centroids. However, this has the problem that there is an intrinsic sign indeter-
minacy in the matrix decomposition obtained by singular value decomposition
(SVD) or eigenvalue decomposition (EVD). Decompositions are unique, except
that two decompositions can be obtained so that one is a reflection of the other.
Although this has no relevance from the mathematical point of view, from a
practical point of view it adds an indeterminacy in the signs calculated in the
eigenvectors of the local spectral clustering [6]. This makes this naive distributed
approach not appropriate because data from different nodes that should be in
the same cluster can have eigenvectors with opposite signs.

In order to provide a better distributed approach, our proposed method con-
sists of the following phases:

1. First, an arbitrarily chosen node, performs a spectral clustering using only
its local data. As a result, from the calculated eigenvectors (V') the cen-
troids are obtained by means of a k-means model. Later, this node selects
one data at random, and sends it and its eigenvector, to the rest of the
nodes.

2. The other nodes receive this information and perform the eigenvalue de-
composition of their local data but adding also the data point sent by the
arbitrary node. Once the eigenvectors have been calculated, it is checked
if for this data point the sign of each component of its local eigenvector
coincides with those of the eigenvector also sent by the arbitrary node. If
in some component the sign is opposite, then the sign of that component
is changed for all the local eigenvectors of that node. The objective of this
process is to avoid the issue of the ambiguity of the sign.

3. After making the necessary sign changes, the eigenvectors are grouped at
each node using k-means.

4. Finally, in order to obtain a set of global centroids, all nodes will send their
local centroids to the arbitrary node to perform a final grouping using k-
means again. The global centroids define a model similar to the one that
would have been learned centrally from the global data set.

5. The final global centroids are shared with all nodes so that they can per-
form the local classification of each new data point that reaches them.

This process is described in detail in Algorithm 1.

3 Experimental results

To check the performance of the proposed Distributed Spectral Clustering (DSC)
algorithm, its results were compared with those of the centralized SC and the
naive DSC (DSC without the sign swapping stage).

425



ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, idoc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

Algorithm 1: Distributed spectral clustering

input : Data points split in n nodes: {D1, D2, ..., D,} and the number of
clusters (k)
output: Centroids of the distributed spectral clustering

Select an arbitrary node to start the process, let’s assume node 1 for
simplicity.
In node 1, compute Vi, centroidsi = SpectralClustering(D1)
From node 1 send to the other nodes a randomly selected data point d € D;
and its eigenvector v{ € V;
for i < 2 to n do
D; =D;ud
Compute V; = eigenvectors(D;)
Get from V; the eigenvector (v{) associated to d
for ¢+ 1 to k do
if sign(v?[c]) # sign(v{[c]) then
| sign_flip(v]c]), Vv eV,
end
end
centroids; = k — means(V;\{ve}, k)
Send centroids; to node 1
end
In node 1, compute centroids = k — means({centroidsi, ..., centroids,}, k)
Return centroids as the global centroids

3.1 Data sets and metrics

To validate our proposal, several 2D synthetic data sets were used. These are
shown in Figure 2 and their characteristics are presented in Table 1. The per-
formance of the method was evaluated by comparing labels obtained by it with
the true labels provided by ground truth. The metric used for the evaluation
was clustering accuracy (Acc) that computes the percentage of total hits. Let
T; and L; be, respectively, the ground truth labels and the labels obtained by
the method. Then, accuracy is defined as [7]:

Zzpzl 6(Ti>Li)

Ace(T,L) = i)

where D is total number of data and §(x,y) is a Kronecker function.

Data set | #samples per cluster | # clusters
Moonss 5000 2
Blobs 5000 3
Clircles 5000 3
Moonsy 4000 4

Table 1: Data sets characteristics
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Fig. 2: Synthetic data sets used: (a) Moonsg, (b) Blobs, (c) Circles, (d) Moons,

3.2 Discussion

Clustering experiments were performed on a CPU 3.2GHz with 32GB RAM
using 10 cores, each corresponding to one processing node. To obtain more
reliable results, each experiment was repeated 20 times. Average accuracy results
are summarized in Table 2. The column labeled as Naive DSC shows the results
obtained by the DSC version without the swapping stage. As expected, naive
DSC does not provide good results as it missclassifies in all cases around half of
the points. Conversely, the proposed method, using the swapping stage, obtain
better results. As can be seen, in some cases (Moonsy and Blobs) it carries out
always the clustering task with no errors, achieving the same performance as
the centralized method (100%). For the other data sets, Circles and Moonsy,
some data points were missclassified in some of the 20 experiments despite of
the swapping stage.

Data set | Centralized SC | Naive DSC DSC
Moonss 100.0 & 0.0 57.60 £ 7.57 | 100.0 &= 0.0
Blobs 100.0 = 0.0 56.09 + 8.41 100.0 = 0.0
Circles 100.0 &+ 0.0 50.32 £ 8.41 | 85.02 £ 9.75
Moonsy 100.0 + 0.0 48.84 £ 6.32 | 92.02 £+ 10.26

Table 2: Mean Acc + std. dev. (%) for each data set

Table 3 compares the execution times used by the centralized and distributed
version to process all data sets. As can be seen, DSC achieves a considerable
reduction in execution time.

4 Conclusions

Spectral clustering has been shown to be more effective in finding clusters than
some traditional algorithms such as k-means. However, it suffers from scalability
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Data set | Centralized SC DSC

Moonss 3,399.85 84.05
Blobs 12,287.42 228.65
Circles 11,130.97 234.32

Moonsy 14,450.38 277.84

Table 3: Mean CPU time (s) needed to clustering each data set

problems in terms of memory use and computational times. In this work, a dis-
tributed approach is proposed to improve speedup with large data sets. Besides,
in a federated learning environment, it is required that each node to perform the
clustering task over its own data and to share only the results, thus maintaining
privacy. However, this solution is damaged by the indeterminacy of the eigen-
vectors sign which causes wrong class assignment. To overcome this problem,
we have proposed a solution in which from one node, only one data point and its
eigenvector are shared, so the rest of the nodes can determine the correct sign
of eigenvectors. With this approach, clustering results are drastically improved,
coming very close to or even matching the centralized version of the algorithm,
at the cost of a much lower execution time demand. All this makes DSC algo-
rithm a very competitive solution when a centralized solution is not possible,
either because data cannot be shared for privacy reasons, or because computing
times are not acceptable when handling large volumes of data. As future work,
we plan to design new strategies regarding the information that is shared with
the reference node used by the rest of the nodes to update the knowledge learned
locally, in order to achieve a better performance, as well as to carry carry out a
more complete experimental study to evaluate the method on data sets with a
greater number of variables and clusters.
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