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Abstract. This paper provides a generative network framework that
can replicate the molecular space distribution to satisfy a set of desir-
able features. The approach incorporates two effective machine learning
techniques: an Encoder-Decoder architecture that converts the string no-
tations of molecules into latent space and a generative adversarial network
to learn the data distribution and generate new compounds. We train this
joint model on a dataset that includes stereo-chemical information. The
results show an improvement in the Encoder-Decoder performance, reach-
ing 89% of correctly reconstructed molecules. The framework can generate
a wide variety of compounds biased towards specific molecular properties
using Transfer Learning.

1 Introduction
Drug discovery is a highly time-consuming, complex, and expensive process

with low rates of success. Recent estimates point that to develop a new drug, an
average $1.8 billion and twelve years are required [1]. This is partly due to the
high dimensionaly of the chemical space, which has been estimated to include
between 1033 and 1060 synthetically accessible molecules [2]. Evaluating the en-
tire chemical space is prohibitively expensive, so it is of the utmost importance
to find strategies to narrow down the search space. Deep Learning (DL) tech-
niques, mainly generative models, have emerged as a promising solution for de
novo drug design, whose aim is to generate novel molecules with specific prede-
fined properties [3]. This process can typically be seen as two-fold: first, creating
a general model that learns the training data distribution and then optimizing
this model to the desired property, usually with either Reinforcement Learning
(RL) or Transfer Learning (TL).

Earlier approaches to solving this problem resorted to the use of Recur-
rent Neural Networks (RNNs), which can learn the syntax of sequences of data.
They were used to generate new molecules represented as Simplified Molecular
Input Line Entry Strings (SMILES), which would then be optimized with RL
[4] or TL[5]. However, this approach can suffer from exposure bias [6] which
prompted the appearance of other DL-based alternatives for the targeted gener-
ation of compounds. Gomez-Bombarelli et al. proposed the use of a Variational
Autoencoder (VAE) that transforms the discrete data into a latent real-valued
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continuous vector [7]. The VAE is trained together with a Predictor that, given
a latent vector, predicts specific properties. In a similar manner, Blaschke et
al. compared VAEs with adversarial autoencoders and showed that, in both
cases, the latent space preserves the chemical similarity of the input molecules
[8]. Prykhodko et al.used an autoencoder to find a numerical representation of
the SMILES Strings that would then be used to train a Generative Adversarial
(GAN) Network[9].

The previous work does not take into account stereochemistry, which is a sig-
nificant factor in drug design, nor does it consider the diversity of the produced
molecules. In this work, we perform an exhaustive grid search of the Encoder-
Decoder model resulting in the use of an embedding layer for the encoder. We
include in its training data SMILES strings that contain stereo-chemical infor-
mation, which is vital when working in drug design but often overlooked due to
its higher complexity. A GAN is then trained on the latent space vectors created
by the Encoder-Decoder model, and its capability to create diverse molecules is
evaluated. We also show that the framework can be optimized towards specific
properties using TL.

2 Methods
The general framework of this study is illustrated in Figure 1 and composed

of an autoencoder, more specifically, an encoder-decoder architecture based on
RNNs [10, 11], and a Wasserstein GAN with gradient penalty [12]. The encoder-
decoder architecture allows the model to learn a context vector (Fig.1-C) that
summarizes the SMILES strings in such a way that it can be reconstructed
only from this context vector. By passing a dataset that consists of SMILES
through the encoder (Fig.1-A), an equivalent dataset made up of context vectors
is obtained. This new dataset is used as real data to train the GAN so that, once
trained, its generator is able to generate new samples from the same distribution
as the context vector’s dataset. These samples are then passed through the
decoder (Fig.1-B) in order to obtain the corresponding SMILES strings. By
combining these two models, it becomes possible to train the GAN, surpassing
the differentiation problem associated with categorical data, such as SMILES
strings, that would arise [13].

2.1 Encoder-Decoder Model
The encoder-decoder model is an autoencoder that works with sequences of

data by resorting to recurrent networks. The encoder-decoder architecture allows
the learning of a context vector. The model summarizes the input SMILES in
such a way that can reconstruct them only from the context vector. The encoder,
Fig. 1-A, contains an embedding layer and two bidirectional LSTM layers with
batch normalization in between. From these bidirectional layers, the final cell
and hidden states, from both directions, are retrieved and then concatenated.
Then the result is passed through a dense layer with a size equal to the desired
length of the context vector. Next, there is a dense layer followed by batch
normalization and a Gaussian noise layer (during training) to make the model
more flexible and the context vector more robust. For the decoder, Fig 1-B,
the context vector serves as input to four independent dense layers whose goal
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Fig. 1: The general workflow of the proposed model that composed of an Encoder-Decoder to
convert SMILES to latent space in-order to be used as real data in the training of a WGAN-GP
network that comprises a Generator and Critic.

is to reconstruct the hidden and cell states that will be given as initial states
to two LSTM layers. These stacked LSTM layers, with batch normalization in
between, are followed by a dense layer with softmax activation function so that
it outputs the probabilities associated with the next token. It should be noted
that, during training, the teacher’s forcing algorithm is executed, and the target
output of the decoder is the same as its input but shifted by one time step. The
complete model is trained using the categorical cross-entropy between the input
and the predicted output as the loss function. The network’s weights are then
updated by the Adam optimizer, considering the gradient of the loss. Note that
the decoder employs the embedding layer to convert the input data, while a
one-hot encoding layer is used for the decoder due to its improved performance.

2.2 Generative Adversarial Network
The second part of the framework is based on a Wasserstein GAN with

gradient-penalty (WGAN-GP). This model has better performance and stabil-
ity during the training process [12] compared to the traditional GAN as proposed
in [13]. The WGAN-GP contains two neural networks with opposing objectives:
a generator (Fig.1-D) and a critic (Fig.1-E). The critic’s goal is to distinguish be-
tween generated x̃ and real data x while the generator aims to fool the critic into
believing that its samples are real. Since the output of the critic is not bounded,
to prevent its gradient from deviating from 1, a gradient penalty (weighted by
λ) is included in the loss function (L). The following equation shows the loss
function where the third term corresponds to the gradient penalty:

L = Ezzz∼pzzz [D(G(zzz))]− Exxx∼pdata [D(xxx)] + λEx̂̂x̂x∼px̂̂x̂x

[
(‖∇x̂̂x̂xD(x̂̂x̂x)‖2 − 1)2

]
If x̃xx = G(zzz) then x̂xx = ε ∗ x̃xx+ (1− ε) ∗ xxx with 0 ≤ ε ≤ 1
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where ε is uniformly sampled between 0 and 1. In practice, the gradient penalty
amounts to creating a set of interpolated samples x̂xx (each using a real sample xxx,
a generated sample x̃xx and ε) that result from randomly choosing points that lie
on the lines that connect the batch of real samples to the batch of fake samples
and evaluating its gradients. The gradient penalty loss term returns the squared
distance between the gradient calculated at the interpolated points and 1, and so,
it penalizes the critic whenever its gradient deviates from 1, therefore enforcing
the 1-Lipschitz constraint [12].

3 Experimental Analysis and Results
3.1 Dataset and Preprocessing
The dataset used throughout the experimental analysis includes 500,000

SMILES strings of drug-like small molecules retrieved from the ChEMBL database
[14] and from the dataset used by [5] which contains biogenic structures. All the
SMILES strings are canonicalized, and there are no duplicates. The SMILES
strings are preprocessed by being tokenized character by character, adding ‘G’
as the first token of each SMILES and ‘A’ at the end and for padding. The
SMILES are then either One-hot Encoded (OHE), where each token becomes a
binary vector or passed through an embedding layer that converts each token
into a dense vector that is learned by the model.

3.2 Validation Strategy
The encoder-decoder is a deterministic model; therefore, it is evaluated based

on the percentage of molecules that can correctly reconstruct. The generated
SMILES are syntactically and biochemically validated by RDkit [15]. From the
group of valid molecules, its uniqueness is also computed as the percentage of
different generated valid molecules. Since it is not just important that the gener-
ated molecules are unique but also that they are diverse, the Internal Diversity
(diversity between the set of generated molecules) and External Diversity (di-
versity between the set of generated molecules and the set of training molecules)
are also computed using the Tanimoto Similarity, Ts, that computes the simi-
larity between two molecules represented by their circular fingerprint; 1 − Ts is
the Tanimoto Distance, and hence the diversity is defined as the average of the
tanimoto distance between every pair of molecules in the datasets.

3.3 Experimental Analysis on Encoder-Decoder
Several architectures for the Encoder-Decoder were evaluated, but the one

that yielded the best results includes an encoder that contains two bidirectional
LSTM layers with 512 units each, 256 for each direction. Both the embedding
dimension and latent dimension were set to 256. All the batch normalization
layers had a batch normalization momentum of 0.9. The Gaussian noise layer
added noise with a standard deviation of 0.1. The model was trained using
the Adam optimizer with a learning rate of 0.01, a batch size of 128, and the
total number of epochs was set to 100, but only the best models regarding
the validation loss were kept (10% of the training data was set as validation
data). Table 1 summarizes the results for training dataset with 100,000 and with
500,000 SMILES Strings. In both cases, the model reaches high percentages of
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correctly reconstructed molecules for the train and test sets. The model trained
with 500,000 molecules learning to generalize better (with 89.2% and 89.0% for
the train and test set, respectively). Molecules that are correctly reconstructed
are automatically valid. Validity (evaluated by RDkit [15]) is constantly higher
than the percentage of correct reconstruction, which means that some molecules
are reconstructed into valid molecules but not the intended ones.

#Training Data %Correct R. %Correct R. %Validity %Validity
(train set) (test set) (train set) (test set)

100,000 88.6 86.8 89.7 89.1
500,000 89.2 89.0 89.9 89.8

Table 1: Performance of the Encoder-Decoder model for 100,000 and 500,000 training dataset.

3.4 Experimental Analysis on WGAN-GP
The implemented WGAN-GP comprises a critic made up of three dense layers

with 256 units and with Leaky-Relu as the activation function (with α = 0.3),
except for the final layer, which does not include an activation function. A vector
of 64 dimensions is drawn from the uniform distribution and then passes through
the Generator that contains five dense layers with 256 dimensions each, except
for the first layer, which contains 128 dimensions; between these layers, Leaky-
Relu activation function (α = 0.3) and batch normalization (momentum of 0.9)
layers are applied. Both the Generator and the Critic are trained using the
Adam optimizer with a learning rate of 0.0001 and include drop-out layers with
a value of 0.2. The WGAN-GP was trained on 100,000 molecules and for 10,000
epochs. The results of sampling 1,000 valid molecules using the full framework
are presented in table 2. As proof of concept and to evaluate the ability of the
model to mimic the desired distribution, the model was also biased through TL
using a dataset with SMILES strings and their corresponding affinities for the
Kappa opioid receptor (KOR) (CHEMBL identifier 237) as measured by the
pIC50. This dataset contained only SMILES with a pIC50 of less than 7. The
biased model was trained for an additional 4,000 epochs with this dataset, 1,000
valid molecules were sampled, and their pIC50 were predicted. As observed
in Table 2, the biased model retains high levels of uniqueness and diversity.
Fig.2 shows that this model effectively shifts the distribution to encompass more
uniformly the values in the range of 5 to 7.

Fig. 2: Predicted pIC50 for 1,000 molecules sampled from the biased model.

4 Conclusions
In this work, we showed improvements in an Encoder-Decoder architecture

that, joined with a WGAN-GP, can be trained to generate new molecules that
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Model %Uniqueness Internal Diversity External Diversity
unbiased 100.0 0.8907 0.8914
biased 99.3 0.8777 0.8764

Table 2: Performance of the WGAN-GP model for the unbiased and biased model.

include stereo-chemical information with high diversity (0.89) and uniqueness
(100.0%). Moreover, this framework can also be optimized to generate molecules
with bespoken properties using Transfer Learning while keeping high values of
both diversity and uniqueness, as we’ve shown by biasing the general model to
generate molecules with a pIC50 of less than 7 for the KOR receptor.
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