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Cross-modal verification for 3D object detection
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Abstract. To overcome the deficiency in the single modality of LiDAR
point cloud, we propose a cross-modal verification (CMV) model for reduc-
ing 3D object detection false positives. The abundant color and texture
information in image modality allow the classification of the projection
region of 3D bounding box proposal in the image plane. Three 3D object
detectors are adopted as backbone and eight evaluation metrics are used
to fully investigate the proposed model. The experiment results show that
the proposed CMV model removes more than 50% of false positives in 3D
object detection proposals and significantly improves the performance of
3D object detection.

1 Introduction

3D object detection is a key component of the autonomous vehicle perception
system. Based on this component, the object shape and spatial position infor-
mation are obtained. Furthermore, image scale variation and perspective trans-
formation problems can be easily avoided in 3D object detection. Therefore, 3D
object detection has become a key research area.

However, due to the difference in data modalities, the detection algorithms
based on the image modality need to be modified to adapt to the point cloud
modality. To overcome the shortage of feature extraction from point cloud
modality, [1] and [2] propose the point-wise and the voxel-wise feature extrac-
tion modules, respectively. Based on these two feature extraction modules, many
LiDAR-based 3D object detectors have been proposed [3, 4, 5].

For the image modality, there are two approaches to implement 3D object
detection. 1) [6] [2] attempt to locate 3D objects only using image modality.
Since the depth information in the image modality is non-explicit, the detec-
tion precision of the image-based method is significantly lower than that of the
LiDAR-based method. 2) The other approach is to fuse images and LiDAR.
With two data modalities, it is able to detect 3D object robustly and accurately
[7].

We notice that there are still a large number of false positives (FP) in the
results of state-of-the-art multi-modal fusion 3D detection methods. Hence, we
propose a cross-model verification (CMV) model that uses image modality to
filter the detection results of LiDAR-based 3D detectors. The proposed CMV
model is a novel method to address result-level fusion. All 3D detection proposals
are projected onto image plane. The proposed CMV model removes FPs based
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on image classification results. The experimental results show that the CMV
model can significantly reduce the number of FPs by up to 50%.

2 Related Work

2.1 LiDAR-based 3D Object Detection

The data structure of LiDAR point cloud is irregular and orderless. A tra-
ditional CNN designed for dense image modality could not operate properly.
To accommodate the data format required for CNN, some detection methods
project the LiDAR point cloud into a bird’s-eye view (BEV) image. In order to
extract features from orderless point clouds, PointNet [1] propose to use symme-
try function. This sophisticated design has been referenced and used in many
3D object detectors. Due to the large number of LIDAR point clouds, VoxelNet
[2] proposes to use Voxel Feature Extractor (VFE) for feature extraction of the
voxelized point cloud. This kind of method usually yields better results.

2.2 Image-based Object Classification

Image classification is a fundamental research in computer vision where deep
neural networks have achieved great success. Some milestones like the LeNet-5,
YOLO and SSD continue to improve the image recognition capabilities. A typi-
cal image object classifier consists of two modules: CNN-based feature extraction
and class regression based on the fully connected layer.

2.3 Multi-modal Fusion 3D Object Detection

Multi-modal fusion is used to compensate for the instability of a single modal-
ity. LIDAR provides accurate depth information and is not affected by lighting
conditions. Images can provide object color and texture detail information. The
multi-modal 3D object detection methods can be categorized as result level, fea-
ture level and multi level depending on the fusion level. Current result-level
fusion methods focus on fusing images with LiDAR detection results based on
projection and geometric constraints.

We find that various 3D object detectors have plenty of false positives in their
detection results. By using the cross-modal verification (CMV) model, these
false positives can be easily identified and removed. The proposed CMV model
is plug-and-play and can be easily integrated into various 3D object detectors
to help improve detection performance.

3 Methods

3.1 Cross-modal verification 3D object detector

The fundamental basis for cross-modal verification of LiIDAR with images is
that the LIDAR could be projected onto image plane. For the KITTI 3D object
detection dataset [8], the projected point pt;,,, = (u,v) in the image plane of

img
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the spatial point pt,. = (v,y,z) can be obtained by Pting = PrectRrcctPt,.
Where P,...; € R3*% is the projection matrix after rectification. Ryee; € R**% is
the expanded rectifying rotation matrix.
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Fig. 1: Cross-modal verification for 3D object detection.

The proposed cross-modal verification 3D object detector has two modules
which are the LiDAR-based 3D object detector and the cross-modal verifica-
tion (CMV) model as shown in Fig. 1. All existing 3D object detectors can
be employed to generate 3D bounding box proposals. The CMV model has an
image-based classifier to output confidence scores which indicate the selection
of 3D bounding box proposals. The deep neural network is used to achieve the
image object classification. Four convolutional layers with 3 x 3 kernel are de-
ployed for feature extraction. After each convolutional layer, the feature maps
are downsampled by a factor of 2 using maxpooling. The output of the class
regression for the cascaded two fully connected layers are 'Foreground’ and
‘Background’. The class 'Foreground’ includes Cars, Pedestrians and Cy-
clists. The class 'Background’ consists of streets, skies, trees and road signs.

3.2 Autonomous Driving Object Recognition Dataset

The autonomous driving object recognition dataset is build on the KITTI 3D
object detection dataset. Based on the ground truth, we crop and keep the
object regions in the images as the Foreground class elements. To increase the
diversity of the samples, the object images with an overlap of 0.7 with ground
truth are cropped at each of the four vertices of the bounding box. The objects
which are too small have been removed based on two criteria, maz(h,w) > 15
pixels and min(h,w) > 10 pixels. Where h and w are the height and width of
the object images.

There are six classes in KITTI 3D object detection dataset. The most men-
tioned classes are Car, Pedestrian and Cyclist. These three classes are considered
as the Foreground class in our autonomous driving object recognition dataset.
For the Background class, we use an algorithm to randomly crop background
images in KITTI dataset. To avoid making some objects appears in the Back-
ground class images, the algorithm checks the overlap between the generated
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background bounding boxes with every ground truth. There are 114342 Fore-
ground class images and 94052 Background class images for training. As for
testing, there are 122198 Foreground class images and 99676 Background
class images.

4 Experiments

4.1 Methodology

3D object detection. Three representative detectors are selected as the base-
line models for evaluation, which are SECOND [3], PointPillars [4], and PartA2
[5]. Since the proposed cross-modal verification model is plug-and-play, these
three detectors can be added directly to obtain performance improvements with
minimal modifications. There are 7481 training frames and 7518 test frames
with both modalities in KITTI 3D object detection dataset. The annotations
of training data are available for public access. While for the testing split, only
data and calibration files are provided. To evaluate the performance of the de-
tector, we divide the training data into two splits according to [3], which are
used for training and testing.

Cross-modal verification Model. The classifier for the cross-modal veri-
fication is begin with four convolutional layers, followed by two fully connected
layers. The convolution kernel size is 3 x 3 with a 2 X 2 maxpooling. The input
image is resized to 64 x 64 pixels. After four convolutional layers, the output fea-
ture map size is 4 x 4 pixels with the batch size of 256. The first fully connected
layer reduces the number of features from 4 x 4 x 256 to 128. Then the last
fully connected layer output the scores of two classes. The autonomous driving
object recognition dataset are used to train and test the CMV model.

4.2 Experiment Results

For 3D object detection task, the most adopted metric is the average precision
(AP). The precision and recall rate are calculated from true positive (TP), false
positive (FP) and false negative (FN). We also calculate the Fl-score and F2-
score based on the precision and recall in order to compare the improvement
effects.

The experiment results for 3D object detection of three classes are shown in
Table 1. To be classified as a true positive (TP), the detection result bounding
box should at least has an intersection over union (IoU) more than 0.7 with the
ground truth bounding box. The false positives (FP) of 3D object detection
results have been greatly reduced due to the cross-modal verification (CMV)
model. As a result, the precision has a greatly improved by up to 18.81%.
In contrast, the recall rate is slightly decreased since the CMV module only
removes FPs from the detection results and does not bring in new proposals.
The effectiveness of CMV should be quite obvious when we compare F1-scores
and F2-scores. All results are improved for F1l-score, where precision and recall
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are considered equally important. Even for the F2-score, where recall is more
emphasized, all scores have been increased.

Class Model TP FP FN | PRE | REC F1 F2 AP
CAR SECOND 6611 | 6999 | 1175 | 48.57 | 84.90 | 61.79 | 73.85 | 79.68
SECOND-CMV | 6546 | 3788 | 1241 | 63.34 | 84.06 | 72.24 | 78.90 | 79.93
PED SECOND 1220 | 3363 | 519 | 26.62 | 50.93 | 34.96 | 43.06 | 56.92
SECOND-CMV | 1146 | 1549 | 593 | 42.52 | 48.01 | 45.10 | 46.80 | 55.19
Yo SECOND 456 | 2158 88 1744 | 27.95 | 21.48 | 24.95 | 65.35

SECOND-CMV 422 795 122 | 34.67 | 25.37 | 29.30 | 26.81 | 64.07
PointPillars 6423 | 7367 | 1366 | 46.57 | 82.46 | 59.53 | 71.45 | 75.99

CAR PointPillars-CMV | 6348 | 4243 | 1441 | 59.93 | 81.49 | 69.07 | 76.02 | 76.25
PED PointPillars 1126 | 6555 | 613 | 14.65 | 45.18 | 22.13 | 31.89 | 44.58
PointPillars-CMV | 1071 | 2252 | 668 | 32.22 | 42.63 | 36.70 | 40.04 | 46.69

cYe PointPillars 405 | 2144 | 137 | 15.88 | 22.86 | 18.75 | 21.02 | 59.77
PointPillars-CMV | 383 721 160 | 34.69 | 20.99 | 26.16 | 22.79 | 60.74

CAR PartA2 6770 | 5142 | 1027 | 56.83 | 86.82 | 68.69 | 78.53 | 83.12
PartA2-CMV 6749 | 3908 | 1048 | 63.32 | 86.55 | 73.14 | 80.64 | 83.25

PED PartA2 1256 | 4109 | 483 | 23.41 | 55.01 | 32.84 | 43.31 | 54.54
PartA2-CMV 1216 | 2146 | 523 | 36.16 | 53.71 | 43.22 | 48.96 | 54.82

Yo PartA2 468 | 1060 75 30.62 | 31.30 | 30.96 | 31.16 | 73.33

PartA2-CMV 454 587 89 | 43.61 | 30.22 | 35.70 | 32.20 | 73.17

Table 1: Results of cross-modal verification for 3D object detection.

We notice that even false positives have been removed more than half, the
average precision do not improve significantly. The reason for this evaluation
result is that the average precision does not consider FP to be as important
as TP. In the process of calculating the average precision, all detection results
are sorted by the given class confidence scores. Then N interpolation intervals
are applied to integrate the area under curve (AUC) of the precision-recall (PR)
curve. Due to the low confidence scores of most FPs, they only have an impact in
the last interpolation interval, which accounts for just 1/N of the overall average
precision. At the same time, the reduction of TP may lead to a decrease in the
number of interpolation intervals. This eventually leads to a significant degra-
dation of average precision. Therefore, since the average precision calculation
takes TP more importantly, it leads to the results in Table 1.

5 Conclusion

In this paper, a cross-modal verification (CMV) model is proposed for reducing
3D object detection false positives. The extensive color and texture information
in the image modal is used to complement the deficiencies of the LiDAR point
cloud modal. The proposals obtained from the 3D object detector are verified
by the CMV model and the false positives are discarded. To train the CMV
model, an autonomous driving object recognition dataset is build. Three 3D
object detectors and eight metrics are adopted to fully investigate the proposed
model. All experimental results show the enhancement of the proposed CMV
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model for 3D object detection.

Our future work will focus on embedding CMV model into 3D object detec-
tors to obtain an end-to-end architecture. In this way, the embedded model has
the possibility to process the proposal of the original proposals. Another possible
improvement would be to perform alternative metrics for 3D object detection
to obtain a comprehensive evaluation of TP and FP. The object classifier in the
experiments can be replaced by other classifiers to obtain better FP reduction
performance.
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