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Abstract. Evaluating adversarial robustness is a challenging problem.
Many defenses have been shown to provide a false sense of security by
unintentionally obfuscating gradients, hindering the optimization process
of gradient-based attacks. Such defenses have been subsequently shown to
fail against adaptive attacks crafted to circumvent gradient obfuscation. In
this work, we present Slope, a metric that detects obfuscated gradients by
comparing the expected and the actual increase of the attack loss after one
iteration. We show that our metric can detect the presence of obfuscated
gradients in many documented cases, providing a useful debugging tool
towards improving adversarial robustness evaluations.

1 Introduction

Adversarial attacks perturb input data under feasibility constraints with the goal
of subverting predictions of machine-learning algorithms at test time [1, 2, 3].
To counter this behaviour, defenses have been designed to trigger failures of
gradient-based attacks [4, 5], such as gradient obfuscation [4, 6], where attackers
are incapacitated in finding a good direction that leads to adversarial examples
since the gradients of the model are too small or noisy. For this reason, standard
gradient-based attacks fail against such defenses, yielding over-optimistic robust-
ness evaluations. However, attackers started to develop adaptive attacks [7, 8], i.e.
strategies that target a particular defense mechanism to still obtain successful
evasion against them, proving their weakness, fueling an arms race between
attackers and defenders. On the other hand, the creation of such adaptive at-
tacks requires manual inspection of the target under attack during the security
evaluation, since there is no quantifiable method for detecting the presence of
gradient obfuscation.

To tackle this limitation, we propose Slope, a metric that quantifies the ease of
decreasing the attacker loss, computed on single points. Such metric is sensitive
to the abrupt changes of models, and it leverages the error that is committed
by approximating the attacker loss during the optimization process. In this way,
Slope can detect the presence of obfuscated gradients, and the attack can be
patched to tackle such challenge. To show the efficacy of Slope, we compute
attacks against four models, two that apply gradient obfuscation, a baseline
undefended one, and one that is adversarially trained. We highlight that our
metric is triggered when the attacks are failing due to gradient obfuscation.
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2 Slope: Measuring Gradient Obfuscation

In this section, we present Slope, our metric to quantify gradient obfuscation.

Notation. Let x ∈ X ⊆ Rd be a sample labeled as class y ∈ Y = {1, ..., C}.
Given the parameters of the target model θ, and a loss function of choice L, the
robust accuracy is defined as:

E(x,y)

[
max
δ∈∆
L (x+ δ, y;θ)

]
,

where the maximization refers to the adversarial loss, i.e., the loss attained against
the worst-case perturbation δ found within the feasible region ∆. This region is
typically defined as an `p ball centered on the input sample x, i.e., ∆ : ‖δ‖p ≤ ε,
and the perturbation δ is optimized via gradient-based algorithms, such as
Projected Gradient Descent (PGD), that iteratively updates the perturbation
along the gradient direction of the loss. The success of these attack strategies
clearly relies on the fact that the loss function is sufficiently smooth, i.e., that the
corresponding gradients contain meaningful information to iteratively improve
the objective.

Measuring Obfuscation with Slope. The underlying idea of the Slope metric
is to compare the expected loss after one gradient update of size η against the
actual observed loss after the update. To this end, we consider one normalized
PGD step of size η, for which the expected loss increment is obtained by solving
this linearized problem:

max
‖δ‖p≤η

L(x+ δ; y;θ)− L(x, y;θ) ≈ max
‖δ‖p≤η

δ>∇xL(x, y;θ)︸ ︷︷ ︸
g

= η‖g‖q ,

where ‖·‖q is the dual norm of ‖·‖p. This equation tells us that the loss increment
depends on the dual norm of the loss gradient and the step size η, as the optimal
perturbation δ? is found by aligning δ with the loss gradient g depending on the
given norm; e.g., δ? = η sign(g) when p =∞, and δ? = ηg/||g||2 when p = 2.

Based on the aforementioned first-order approximation, we define the Slope
metric S evaluated at x as the ratio between the estimated loss increment and
the actual one:

S(x) =
η‖g‖q

L(x+ δ, y;θ)− L(x, y;θ)
.

The ideal scenario would be S(x) ≥ 1, where the approximation is consistent
with the actual loss increment. If 0 < S(x) < 1, the approximation is following a
good direction, but it could be improved, since the actual loss increment is higher
than the computed approximation. However, if S(x) ≤ 0 means that either the
loss can not be increased, or the step is performed in the opposite direction, thus
resulting in a decrease in the attacker loss. Such is the case when the attacker
should rethink or debug their strategy, since it is not being correctly optimized.
The Slope metric is calculated sample-wise, and we can also compute the mean
value over many observations x0, ...,xn as S̄ = 1

n

∑n
i=1 S(xi). This average acts
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Fig. 1: Loss landscape visualizations on the bi-dimensional space spanned by the
`∞ adversarial direction (v1) and a random direction (v2) for the models used
in our experiments: (a) K-WTA, (b) Distillation with Cross Entropy loss, (c)
Distillation with logits loss, (d) Standard model, and (e) Adversarial training.
Note that S(x) ≤ 0 only for models (a) and (b), which present obfuscated
gradients.
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(a) MNIST models.
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(b) CIFAR models.
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Fig. 2: Security evaluations of the four models. On the x axis, the values for the
perturbation budget ε used for the evaluation, while on the y axis the robust
accuracy.

as a global measure for the ease of increasing the attacker loss against a particular
model.

3 Experimental evaluation

We now show how our metric Slope is correlated with the ease or difficulty of
optimizing the loss of an `p PGD attack, against a target model.

Target models We select four models, two of them are trained using particular
techniques that are known to cause gradient obfuscation [8], one is a standard-
trained model, and the last one is an adversarially-trained one.
k-Winners Take All (k-WTA) [6]: the network is trained to forward the output of
the k most active neurons for each layer, producing piece-wise constant regions
interleaved with discontinuities in the loss surface. Hence, by keeping k low, we
ask for sparse responses that leads to a noisy landscape that abruptly changes
around samples, as shown in Fig. 1a. This phenomenon affects the gradients of
the model, that are characterized by high-variability in both directions and norms.
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Fig. 3: The values of the mean Slope S̄, computed for both `2 (a) and `∞ (b).
On the x axis, the step sizes η used for computing the approximation, while on
the y axis we report the values of S̄.

This model has to been shown not to be robust against adaptive attacks [8]. For
this paper, we take the original model trained on CIFAR10.
Distillation [4]: the model is shown to have zero gradients in most of the loss
landscape, except in correspondence of samples, where the scores soar and
often cause numerical instability on the outputs [9]. Intuitively, the model is
approximating a step function around each training sample, as shown in Fig. 1b.
For this reason, the attack proposed by Athalaye et al. [7] discards the last softmax
layer, using only the logits as output of the classifier. This trick smooths the loss
function, as shown in Fig. 1c, successfully removing the effect of the defense. We
test such model by training it on MNIST, following the original evaluation [4, 9]
and computing the gradients of the Cross Entropy loss (obfuscated) and on the
pre-softmax scores (not obfuscated).
Standard training : we use the implementation provided by RobustBench [10],
that is a WideResNet [11] model trained on CIFAR10. Since it is not trained with
any defenses, the loss landscape is smooth, but it contains many local minima
and maxima, as shown in Fig. 1d. Hence, all classes are very close one to the
other, and adversarial examples are very easy to be found.
Adversarial training [5]: the model is trained with both normal and adversarial
examples, computed with an attack of choice, and such process is repeated until
a desired robust accuracy is reached. As a result, the loss landscape becomes
smoother, reducing the blind-spot areas where adversarial examples lay, as shown
in Fig. 1e. For our work, we use the ResNet [12] model trained by Madry et
al. [5] on CIFAR10.

Results We report the results of our experimental analysis, by taking into
account the correlation between our metric S̄ and the robust accuracy of each
target. For computing S̄, we use η ∈ [0.01, 0.1] when using the `2 norm (Fig. 3a),
and η ∈ [0.001, 0.01] when using the `∞ norm (Fig. 3b). The security evaluation
is computed by attacking all the targets with PGD `∞. For the model trained
on CIFAR10, we set the maximum perturbation ε ∈ [0, 0.1] (Fig. 2b),where 0
implies the accuracy in absence of the attack, while we use ε ∈ [0, 0.5] for the
attacks against the models trained on MNIST (Fig.2a).

By looking at the output of S̄, we notice that models trained with obfuscated
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gradients are characterized by values that are less than or equal to zero, implying
a difficulty in detecting the right direction to follow during the attack. For
instance, the Distillation model with Cross Entropy loss has null gradients, while
k-WTA is characterized by noisy gradients that lead the loss to a decrement
rather than an increment.

The other models’ scores are positive, meaning that their gradients are
informative for the attack and aligned with the loss to increase, hence converging
to adversarial points. These effects are very similar for both `2 and `∞ norms,
implying that such trend is characteristic of the model itself rather than the
norm used for computing one step of PGD.

These results are confirmed by the security evaluations in Fig. 2: all the
defended obfuscated models are less stressed by the adversarial attacks performed
with PGD. The fact that the robust accuracy does not fall even with high
perturbation budget, i.e. in the rightmost part of the security evaluation plots,
confirms the hypothesis that the attack strategy is not suitable for those models.
Also, the smoother models are affected by our attacks when the perturbation
budges increases, as also predicted by S̄. Hence, Slope is a good proxy for
detecting the presence of gradient obfuscation inside the model, allowing the
attacker to rethink their strategy, and landing successful evasion attacks.

4 Conclusions

We propose a metric for detecting the presence of gradients obfuscation, matching
them with the ease of increasing the loss of the attack with PGD. Such metric is
based on the intuition that obfuscated gradients can not be approximated during
a step of PGD attacks, hence the computed loss is not representative of the real
loss of the model. We test the metric against four models, where two of them
are defended with obfuscated gradients, showing that the output of our metric
is correlated with inability of decreasing the loss of the obfuscated ones. Hence,
our metric can be used as a tool for detecting such defense, helping the attacker
devising a strategy against the target.

As future work, we plan to create more metrics targeted on other defenses, to
give the attacker a comprehensive suit of tools for detecting them.
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