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Abstract.

Early detection of laryngeal tumors is critical for their successful therapy.
In this paper, we investigate how hyperspectral (HS) imaging can con-
tribute to this aim based on an in-vivo data set of 13 HS image cubes
recorded in clinical practice. We perform semantic segmentation with a
tailored U-Net trained on labels provided by the clinicians. We specifi-
cally investigate the influence of exposure time during image acquisition,
the suitable wavelengths to determine the most informative image chan-
nels, and present quantitative results on accuracy and the AUC measure.

1 Introduction

The larynx is the site of the majority of head and neck malignancies and early
detection of laryngeal tumors is critical for therapy [1]. In order to detect cancer
early and from images, the long-wavelength range is recommended because the
penetration depth into the tissue is higher [2]. Hyperspectral Imaging (HSI) po-
tentially supports capturing this relevant spectral information due to extending
spectral resolution into the visible-near infrared. The HS image cubes then can
be processed to indicate suspicious regions by deep learning for semantic seg-
mentation. In this respect, Convolutional Neural Networks (CNN) have shown
promising results for cancer detection [3], specifically the well-known U-Net ar-
chitecture [4]. Although HSI thus is promising, there are relatively few works of
Deep Learning in HSI. Eggert et al. [5] were able to predict in-vivo laryngeal
cancer with a 2D CNN, and normal tissue within a spectral range of 380 nm to
680 nm in the visible spectrum and obtain an average AUC of 79%. However,
longer wavelengths are favorable according to [6, 7]. Halicek et al. [8] developed
a CNN classifier to diagnose head and neck cancer using pre-processed HSI with
78% AUC across a spectral range of 450 nm to 900 nm. But in contrast to [5]
and our investigation, the tumor categorization was done ex-vivo. Furthermore,
none of these past works used HS cube at a low spatial resolution as they are
realistic in the clinical application and used in our study, nor a U-Net. In all
approaches, the cost of the training and test time is still high which is a con-
siderable challenge for medical applications like the one considered here, where
ideally the medical practitioner should see the result in vivo immediately during
the endoscopic examination of the larynx. In our previous work [9], we proposed

*The data set collection was funded by the German Cancer Aid within the project frame-
work ”Early detection of laryngeal cancer by means of Hyperspectral Imaging (109825110275)”.
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(a) Low complexity. (b) Medium complexity. (c) High complexity.

Fig. 1: Examples for lesions of different difficulties, indicated by green lines.

an efficient HSI Deep Learning System for laryngeal cancer prediction, which
shows great potential to be implemented as a clinical application.

In this paper, we investigate how to get information-rich images from HS
imaging as well as how to determine the most relevant information in the cap-
tured images to speed up the prediction and training process. It turns out that
several factors are crucial including the spectral resolution of the captured im-
ages, the time of exposure to the light source during image acquisition, and
the wavelength range that carries the most relevant information. The latter is
important as specifically for HS images training is very time-consuming. Fur-
thermore, we use images directly from clinical practice that consequently display
a large variance and are of varying quality (see also Fig. 1). To the best of our
knowledge, this is the first work that includes a wavelength analysis as a func-
tion of the exposure time and considers diverse, clinical images in form of HS
cubes at a low spatial resolution in the visible-near infrared spectrum to detect
laryngeal cancer with a U-Net architecture.

2 Clinical HSI Data Set

The HSI data set was collected from 13 different patients during clinical prac-
tice and in a limited time frame, such that recording conditions could not be
controlled. Different equipment was used as available and different physicians
were involved. This results in a complex, but clinically very realistic data set.
In particular, due to the varying power of the used halogen light sources and the
varying diameter of the rigid endoscopes, the exposure time had to be adjusted
accordingly, so that the bands are illuminated similarly across different HSIs.
Hence, each HS image was captured at two different exposure times, with mean
exposure times of 57.5 ms and 77.5 ms.

Images were captured using a hyperspectral snapshot camera1, which has 25
spectral bands ranging from 665 to 975 nm in a 5 × 5 mosaic with a spatial
resolution of 409 × 217 pixels. Ex-post analysis shows that HS images display
very different conditions and for the further analysis below, we grouped images
by means of visual inspection to [high, medium, low] complexity (cf. Fig. 1)
representing ≈ 1/3 of the dataset each. For all used images, the ground truth
malignant property of the tumor lesion was verified through pathological inves-
tigation, and images were hand-labeled by the head physician (cf. Fig. 1).

1MV0-D2048x1088-C01-HS02-160-G2, Photonfocus AG, Switzerland
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Fig. 2: Modified U-Net architecture for 4 channels, visualized using [10].

3 Methods

Pre-Processing and Data Augmentation: First, the HS cube is generated
from the captured image by demosaicing, reflectance calculation, and spectral
correction. Hence, the aligned and noise-reduced HS cube has 24 bands within
the wavelength range of 668.86 nm to 948.54 nm. Second, glare points are de-
tected by bi-dimensional histograms and removed by inpainting. Third, patch
generation and data augmentation are performed to increase the size of the data
set and avoid overfitting. Half of all patches are cut out of the data cube with
an overlap of 50%. The other half is taken randomly around the perimeter of
the lesion, which counteracts the imbalance between pixels of a lesion and back-
ground pixels. The patches are then randomly flipped, mirrored, and rotated
to obtain 100 patches from each of the 13 HS cubes. Lastly, binary masks were
created from the labeled images to provide the pixel-wise classification labels.
Network Architecture: Fig. 2 shows the used modified U-Net. Two convolu-
tional, two batch normalization and one dropout layer are added in a convolu-
tional block to enhance generalization and reduce overfitting. We also implement
reflective padding and insert a final cropping layer.
Loss Function: In the data set, the distribution between the background and
lesion pixels is unbalanced. Thus, a weighted sum of binary cross-entropy (BCE)
and dice loss (DL) function is implemented, called Combo Loss [11] (cf. Eq. 1).
It leverages the flexibility of DL with regard to class imbalance and the curve
smoothing of BCE. The factor α = 0.7 is chosen heuristically. For parameter
updates, the Adam optimizer with an initial learning rate of 5×10−5 is utilized.

CL(ŷ, y) = αDL(ŷ, y) + (1− α)LBCE(ŷ, y) (1)

where LBCE(ŷ, y) = −(y log(ŷ) + (1− y) log(1− ŷ)) and DL(ŷ, y) = 1− 2yŷ+1
y+ŷ+1 .

4 Experimental Results

As semantic segmentation addresses a pixel-wise classification problem, the out-
put of the U-Net can pixel-wise be interpreted as the probability for assignment
of the class malignant vs. non-malignant. A classification threshold on the
probability value parameterizes the outcome and a respective ROC curve over
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Ch-Group
Exposure Time of 57.5 ms Exposure Time of 77.5 ms
Accuracy AUC Accuracy AUC

No.1− 4 0.82 ±0.11 0.83 ±0.20 0.81 ±0.14 0.73 ±0.27
No.5− 8 0.83 ±0.13 0.85 ±0.17 0.85 ±0.15 0.79 ±0.21
No.9− 12 0.84 ±0.13 0.81 ±0.19 0.80 ±0.22 0.80 ±0.22
No.13− 16 0.84 ±0.14 0.80 ±0.20 0.75 ±0.24 0.75 ±0.24
No.17− 20 0.85 ± 0.12 0.86 ± 0.14 0.76 ±0.20 0.76 ±0.20
No.21− 24 0.81 ±0.11 0.84 ±0.17 0.76 ±0.21 0.76 ±0.21
No.1− 24 0.82 ±0.15 0.80 ±0.24 0.76 ±0.21 0.76 ±0.21

Table 1: Average on leave-one-patient-out testing for threshold 0.5 and AUC.

all thresholds and the corresponding Area Under Curve (AUC) [12] can be de-
rived as a summarizing measure to compare classifications with different training
units. While AUC has issues and in future work we plan a more detailed analy-
sis, the AUC makes the results comparable to the previous work [5] and [8]. For
the metrics, only the pixels that are located within the field of view of the re-
spective endoscope are considered to ensure a veritable impression of the skewed
data set. To investigate the relevance of certain wavelength ranges, we divided
the 24 available channels into six 4-channel groups and compared these subsets
to the full HS cube. The evaluation was repeated for both exposure times.

First, Table 1 shows respective results for the prediction accuracy at the
threshold 0.5, as well as the AUC, averaged over leave-one-patient-out cross-
validation. These results show a tendency that the mean AUC value is smaller
for larger exposure time, which we explain by partly overlighted channels at the
edges of the cube. We assume that this is why the 24-channel group No.1− 24
at 57.5 ms performs better than the ones at 77.5 ms. Further, the channel group
No.17−20 (877−911 nm) performs best for the mean exposure time of 57.5 ms.

However, these numerical scores are ultimately inconclusive, because of the
rather high standard deviation (SD). This was to some degree expected, given
the high variance in clinical conditions when recording the initial data (cf. Fig. 1
and Sec. 2). On the other hand, visual inspection of the full segmented images,
which summarize many of the pixel-wise classification results in one visual panel,
showed excellent results in the majority of the cases (cf. e.g. the heatmaps in
Fig 3). It turns out that most of the variance is caused by a few HS cubes only.

Thus, in a second step, we analyze results wrt to complexity where on less-
complex data higher accuracy is expected and the higher the complexity, the less
test accuracy is accepted [13]. Accordingly, Table 2 shows the same results as
above only for medium and low complex HS cube (e.g. in Fig. 1). These confirm
the tendency that a lower exposure time leads to an improved segmentation of
the tumor lesion and the channel group No.17 − 20 achieved the highest AUC
overall with 0.95 and a very low SD of 0.03 indicating excellent generalization.

Finally, Table 3 shows the average test results for low complex samples only.
It confirms that the lower exposure time yields higher accuracy and better AUC,
regardless of the wavelength range considered, which is illustrated with high
accuracy and very low SD for all channel groups.
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Ch-Group
Exposure Time of 57.5 ms Exposure Time of 77.5 ms
Accuracy AUC Accuracy AUC

No.1− 4 0.86 ±0.11 0.93 ±0.07 0.79 ±0.15 0.84 ±0.18
No.5− 8 0.86 ±0.15 0.90 ±0.16 0.85 ±0.15 0.90 ±0.11
No.9− 12 0.85 ±0.13 0.89 ±0.15 0.86 ±0.16 0.88 ±0.17
No.13− 16 0.84 ±0.14 0.86 ±0.19 0.82 ±0.16 0.84 ±0.21
No.17− 20 0.86 ±0.11 0.95 ± 0.03 0.84 ±0.13 0.83 ±0.17
No.21− 24 0.82 ±0.13 0.89 ±0.14 0.81 ±0.16 0.84 ±0.17
No.1− 24 0.88 ± 0.13 0.91 ±0.17 0.84 ±0.13 0.80 ±0.19

Table 2: Average test error for medium and low complexity samples.

Ch-Group
Exposure Time of 57.5 ms Exposure Time of 77.5 ms
Accuracy AUC Accuracy AUC

No.1− 4 0.93 ±0.03 0.97 ±0.01 0.87 ±0.07 0.95 ±0.05
No.5− 8 0.93 ±0.01 0.97 ±0.02 0.92 ±0.02 0.92 ±0.11
No.9− 12 0.91 ±0.03 0.97 ±0.02 0.92 ±0.04 0.96 ±0.04
No.13− 16 0.93 ±0.02 0.97 ±0.02 0.90 ±0.06 0.95 ±0.08
No.17− 20 0.92 ±0.03 0.95 ±0.04 0.88 ±0.04 0.86 ±0.15
No.21− 24 0.87 ±0.08 0.96 ±0.03 0.87 ±0.05 0.95 ±0.04
No.1− 24 0.93 ± 0.01 0.98 ± 0.01 0.89 ±0.08 0.91 ±0.10

Table 3: Average test error for low complexity samples.

(a) exposure time = 57.5 ms. (b) exposure time = 77.5 ms.

Fig. 3: Low-complexity image and heat map of chan-
nel group No.1− 24 with ground truth of malignant
lesion determined with red line marked by expert.

This is complemen-
tarily visualized in the
heatmaps in Fig. 3 which
show the probability of
cancer ranging from 0.0
(blue) to 1.0 (yellow) for
each pixel. Accordingly,
more true positives with
a high probability can be
observed in Fig. 3a and
additional false positives
on the left vocal band can
be seen in Fig. 3b. Al-
though the best accuracy,
in this case, was achieved by the full HS cube with all 24-channels, still the 4-
channel group from 17−20 reaches a very good accuracy of 0.92 with SD of 0.03.
Hence, the channel group No.17− 20 achieved on average the highest accuracy
and AUC as well as the lowest SD over all the results regarding the different
complexity degrees. Beyond, the training time is reduced from ∼ 53 to 24 min-
utes using i7-7700K, 16 GB RAM and 2 RTX 3080 Ti, and the test time from
∼ 60 to 40 seconds using i5-2500K, 16 GB RAM and intel HD Graphics 3000.
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5 Conclusion

In this contribution, we have shown that HSI on raw clinical data is feasible for
laryngeal cancer detection with a U-Net architecture. The medical hypothesis
that bands with large wavelengths should be favorable could be supported. Ad-
ditionally, we were able to reduce the number of HSI channels and speed up the
prediction and training process without reducing the performance. Furthermore,
the results show clearly how the data complexity, as well as the exposure time,
play significant roles in tumor detection and segmentation.

There are obvious shortcomings that need to be addressed in further work.
All results have been obtained on a still small data set with an overall high vari-
ance, and we are well aware that labeling for the ground truth can be improved.
The complexity analysis shows that potentially conditions need to be controlled
somewhat more. Note that, however, it is not necessary to classify all pixels
perfectly to reach our medium-term goal of providing the physician with an in-
vivo online signal whereat to prevent overlooking critical lesions. This mediates
the effect of noise on the pixel level but calls for more significant measures than
plain pixel-wise accuracy or AUC to be employed. In summary, we believe that
overall the results are very encouraging and show that beyond the visible spec-
trum, HSI can contribute strongly to cancer detection if the technical difficulties
specifically in image recording and generation can be mastered.
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