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Abstract. This paper presents a neural network for predicting the severity/presence 

of Parkinson’s disease motor symptoms – tremor, bradykinesia and dyskinesia, 

based on accelerometer signals collected while the patient is executing selected 

tasks. The suggested network uses accelerometer signals as input along with the 

type of completed task and the side the device is worn on. The data was collected 

in the Levodopa Response Study funded by MJFF. The model has been trained for 

every symptom separately and the results have helped to identify the tasks that 

result in the best accuracy of symptom detection and evaluation.  

1 Introduction 

Parkinson's disease (PD), which is the second most common age-related 

neurodegenerative disorder, is affecting primarily people above 50 with the prevalence 

increasing with age[1]. The disease is hard to diagnose and is characterized by many 

symptoms that have a motor and non-motor character. This paper focuses on  3 motor 

symptoms that bother the patient making life very difficult: tremor[2], bradykinesia[3] 

and dyskinesia[4]. 

In this work, these three symptoms will be considered during the patient’s state 

evaluation. The paper focuses on using deep learning for signal processing in order to 

predict the severity/presence of these 3 symptoms based on accelerometer signals 

registered from both hands. The signal data is collected while the patient is 

performing selected tasks that should lead to manifestation of these symptoms. The 

trained deep learning models will be later evaluated using the test dataset using 3 

basic metrics: accuracy, balanced accuracy[5] and AUC PR[6]. The acquired results 

will be useful for determining which tasks are the best for detecting each of the 

symptoms, which tasks result in the best performance of the prediction model, 

detecting and evaluating the severity of symptoms. 

2 Dataset 

The dataset used in the experiment was provided and funded by the Michael J. Fox 

Foundation – MJFF Levodopa Response Study[7]. The study was conducted in order 

to monitor and understand motor fluctuations and symptoms better, when the patient 

is both, at home and the clinic. Patients were equipped with 3 or 8 sensors 

(accelerometers) placed on the patient limbs for the whole duration of the study – 4 

days. During the first and the last day of the trial, for each patient, the clinician asked 
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him/her to perform a set of tasks: standing (stndg), walking straight(wlkgs), walking 

while counting(wlkgc), going up the stairs(strsu), going down the stairs(strsd), 

walking in a narrow passage(wlkgp), finger to nose – right arm (ftnr), finger to nose – 

left arm (ftnl), repeated arm movement – right (ramr), repeated arm movement – left 

(raml), sit to stand (ststd), drawing and writing on a paper (drawg), typing on a 

computer keyboard (typng), assembling nuts and bolts (ntblt), take a glass of water 

and drink (drnkg), organizing sheets in a folder(orgpa), folding a towel(fldng), sitting 

(sittg). They were repeated 6-8 times with 30-minute intervals. During each of the 

exercises, the clinician evaluated the state of the patient by accessing the 

severity/presence of three motor symptoms: tremor – severity: 0– 4, bradykinesia and 

dyskinesia – presence. The symptoms were evaluated for both hands and legs during 

the execution of predefined tasks. For the purpose of this paper, only upper limbs 

measurements were considered - using smartwatches (GENEActiv and Pebble). 

2.1 Dream Challenge 

In 2017, a part of the dataset has been used in the Parkinson’s Disease Digital 

Biomarker DREAM Challenge[8]. The participants were tasked with feature 

extraction. These feature sets were later evaluated using ML models which would 

predict the presence/severity of each of the symptoms. In the challenge, the 

participants could use raw accelerometer signal recorded during tasks execution along 

with metadata (patient identifier e.g., 3_BOS, site – Boston/NYC, device – 

Pebble/GENEActiv, device side – Left/Right, visit – 1/2, session – 1-8, task). The 

solutions were evaluated using AUC PR[6].  

The models created during the challenge used information about the session number, 

visit, patient identifier and site, what makes it nearly impossible to apply the trained 

models in other conditions, on newly collected measurements, that might be carried 

out in a different location, performed on other patients, outside the study’s visit and 

session regime. To be able to predict the severity of tremor and the presence of 

bradykinesia and dyskinesia it is necessary to build a model that does not use the 

metadata as input. 

2.2 Use of the dataset 

Based on the dataset, it was possible to extract a different number of samples for each 

of the symptoms, for dyskinesia and tremor – 12 883, bradykinesia - 8 347 (not all 

symptoms were evaluated during every exercise and some of the data was missing). 

For the purpose of the experiment each dataset has been split into training (75%) and 

testing (25%) sets.  

3 Deep learning model 

In order to make the created model applicable to sensor measurements outside the 

Levodopa Response Study, only the raw accelerometer signal was used (3 axes: X, Y 

and Z) along with the task code and the side the device was worn on – left/right. Only 

this data has been used to train the model predicting the intensity and presence of PD 

symptoms to make it independent of the study’s regime. 

272

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



3.1 Data preprocessing 

Before the data is provided to the network’s inputs, basic transformation is performed. 

To keep the network’s dimensions constant, it is ensured that all the samples are of 

equal length – 4000 values per each axis (frequency – 50 Hz). When the sample is 

longer, only the last 4000 samples are considered, in the case of shorter recordings, 

the signal is padded with zeros until it matches the desired length. The next step is the 

normalization of the signals, it is performed based on the mean and standard deviation 

for each of the axes. For the task type and device side features one-hot encoding is 

performed and followed by normalization. 

3.2 Network structure 

The neural network (presented in Fig. 1) consists of two main branches: the 

convolutional branch – which transforms the accelerometer signal and outputs 

extracted feature values and the simple input branch providing task and device side 

information. The outputs of the simple branch and the last convolutional layer are 

concatenated. 

The convolutional branch consists of 8 sequences of convolutional layers(CL), ReLU 

activation functions and max pooling (size: 2). After passing through CLs the signal is 

flattened and supplemented with tasks and the device side vector after one-hot 

encoding. The full vector is then processed by two fully connected layers with ReLU 

activation functions and dropout. The final layer has 1 output – binary classification 

(bradykinesia, dyskinesia) or 5 (tremor) outputs that correspond with output symptom 

severity/presence. For tremor severity prediction the values are then passed through 

the softmax function. The structure of the network was based on ideas proposed in the 

DREAM Challenge[8].  

 

Fig. 1: Neural network structure for classification of symptom presence and 

severity.  

The same network structure has been used for all the classification tasks with the only 

differences being the number of outputs in the last layer, the activation function 

(Sigmoid for detection, ReLU for severity evaluation) and the use of softmax 

function. The Adam algorithm (learning rate: 0.0003-0.001  depending on the 

symptom) was used for optimization and the weighted cross entropy as the loss 

function (big differences in class members number). 
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4 Results 

For the purpose of this paper four types of experiments have been executed: 

prediction of tremor severity, presence of bradykinesia, dyskinesia and tremor (all 

values of tremor greater than 0 are treated as “symptom present”). The experiment of 

tremor presence training was created in order to be able to easily compare the quality 

of symptom detection for all 3 symptoms. Tables 1 and 2 contain metrics values for 

classification results for each of the symptoms - accuracy, balanced accuracy and 

AUC PR[6], which has been used to evaluate solutions in the Dream Challenge[8]  for 

the whole set of tasks and for each of them individually. 

The best results have been achieved for bradykinesia detection, all three metrics 

verify that the model performs well in detecting the symptom. The worst results are 

achieved for dyskinesia detection. This might be a result of confusion of dyskinesia 

with voluntary movements performed by patients or incorrectly selected task set for 

detection. 

Table 1: Classification results for bradykinesia and dyskinesia 

Task 

Bradykinesia Dyskinesia 

Balanced 

accuracy 
Accuracy AUC PR 

Balanced 

accuracy 
Accuracy AUC PR 

ALL 83.7% 83.1% 0.847 70% 70.9% 0.279 

stndg - - - 58.7% 69.4% 0.151 

wlkgs 82.2% 82.2% 0.823 65.8% 55.8% 0.512 

wlkgc 80.4% 80.2% 0.877 60.7% 55.2% 0.342 

strsu 56.7% 67.6% 0.365 60.8% 56.5% 0.203 

strsd 53.6% 61.3% 0.430 76.0% 55.6% 0.196 

wlkgp 81.8% 81.6% 0.818 54.9% 50.6% 0.204 

ftnr 73.3% 76.5% 0.742 64.6% 58.8% 0.260 

ftnl 80.1% 83.6% 0.780 68.3% 73.2% 0.229 

ramr 87.0% 85.7% 0.957 61.0% 58.2% 0.343 

raml 88.2% 87.0% 0.956 61.6% 63.8% 0.229 

ststd 65.5% 64.8% 0.337 76.6% 80.5% 0.500 

drawg 69.9% 62.1% 0.676 62.9% 81.4% 0.147 

typng 63.9% 49.4% 0.237 43.8% 85.6% 0.027 

ntblt 70.4% 66.7% 0.466 59.1% 76.8% 0.136 

drnkg 74.1% 58.5% 0.268 67.7% 74.4% 0.134 

orgpa 79.0% 82.7% 0.695 57.0% 74.9% 0.128 

fldng 68.3% 88.4% 0.634 70.0% 57.7% 0.104 

sittg 53.2% 27.5% 0.258 57.1% 83.5% 0.089 

Detecting bradykinesia has been most successful when the patients were performing 

repeated arm movements (both arms). Good results were also achieved for walking 

tasks and finger to nose movements. The worst results were received for the following 

activities: sitting, typing and drinking as well as the tasks represented by the smallest 

number of samples: going up and going down the stairs.  

The results of dyskinesia detection are overall worse than for bradykinesia. The trained 

model might have confused the symptom occurrence with voluntary patient movement. 
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The tasks providing the best performance are sit to stand movement and walking 

straight followed by walking while counting and repeated arm movement (right arm). 

Typing, sitting and organizing sheets in a folder provided the worst prediction results. 

Table 2: Tremor severity and presence prediction results 

Task 

Tremor(severity) Tremor(presence) 

Balanced 

accuracy 
Accuracy AUC PR 

Balanced 

accuracy 
Accuracy AUC PR 

ALL 61.1% 60.5% 0.730 78.9% 80.9% 0.748 

stndg 40.8% 53.0% 0.628 73.6% 75.0% 0.758 

wlkgs 69.2% 64.5% 0.844 81.0% 84.4% 0.809 

wlkgc 42.4% 52.2% 0.766 80.3% 81.1% 0.771 

strsu 43.8% 84.0% 0.998 54.6% 71.9% 0.189 

strsd 32% 50% 0.777 56.3% 74.1% 0.554 

wlkgp 42.9% 42.6% 0.769 76.5% 75.2% 0.687 

ftnr 50.1% 40.6% 0.584 81.2% 79.1% 0.827 

ftnl 56.1% 34.9% 0.530 68.8% 69.7% 0.669 

ramr 57.5% 47.6% 0.549 77.4% 80.9% 0.855 

raml 42.4% 48.6% 0.623 74.9% 75.6% 0.754 

ststd 35.3% 64.8% 0.882 71.7% 85.5% 0.459 

drawg 53.5% 50.9% 0.814 72.8% 64.6% 0.625 

typng 45.5% 48.2% 0.648 64.3% 62.7% 0.584 

ntblt 57.9% 52.3% 0.642 72.0% 71.4% 0.677 

drnkg 54.6% 57.6% 0.754 73.3% 74.6% 0.714 

orgpa 67.4% 49.1% 0.746 77.6% 80.8% 0.736 

fldng 49.9% 75.1% 0.819 71.5% 78.7% 0.730 

sittg 42.6% 53.0% 0.816 61.9% 62.8% 0.415 

The results of tremor severity predictions for specific tasks might be ambiguous due 

to the small number of class members, most of the tasks did not have even one class 

member for at least one of the classes. However, it is noticeable that the results for 

walking straight and organizing sheets provide the highest metrics values. The best 

activities for this detection are walking, organizing sheets in a folder and right arm 

movements. The worst tasks are going up and down the stairs (small number of 

samples) and sitting.  

5 Conclusions 

The symptoms of Parkinson’s disease can be partially restricted and diminished due 

to properly organized therapy. For that, the clinician must know how severe the 

symptoms are and when they manifest. Using sensors for collecting data about these 

symptoms and using machine learning for their evaluation is an important step in 

creating a system that would be capable of monitoring the patients’ state throughout 

the whole day and inform the clinician about any abnormalities and suggest changes 

in therapy. Approaches to build such systems are already being developed[9], [10]. 

The results and the trained models presented in this paper can be further used to 

develop such solutions.  
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The achieved results confirm that machine learning algorithms can be used to predict 

both, the presence and the severity of Parkinson’s disease motor symptoms based on 

accelerometer signals. The paper also identified the tasks that can be performed by the 

users in order to increase the accuracy of prediction. Overall, the best results were 

provided by walking and right arm movement activities. The tasks resulting in the 

worst accuracy measures, across all the symptoms were sitting and typing. 

Unfortunately, some of the tasks were represented by a very small number of samples 

(going up the stairs), further investigation regarding these tasks is advised. 
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