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Abstract. Offline reinforcement learning, by learning from a fixed

dataset, makes it possible to learn agent behaviors without interacting

with the environment. However, depending on the quality of the offline

dataset, such pre-trained agents may have limited performance and would

further need to be fine-tuned online by interacting with the environment.

During online fine-tuning, the performance of the pre-trained agent may

collapse quickly due to the sudden distribution shift from offline to online

data. We propose to adaptively weigh the behavior cloning loss during

online fine-tuning based on the agent’s performance and training stabil-

ity. Moreover, we use a randomized ensemble of Q functions to further

increase the sample efficiency of online fine-tuning by performing a large

number of learning updates. Experiments show that the proposed method

yields state-of-the-art offline-to-online reinforcement learning performance

on the popular D4RL benchmark.

1 Introduction

Offline or batch reinforcement learning (RL) [1, 2] deals with the training of
RL agents from fixed datasets generated by possibly unknown behavior policies,
without any interactions with the environment. However, the performance of
trained policies will be limited by the quality of the offline dataset and it is often
necessary or desirable to fine-tune them by interacting with the environment,
which is called offline-to-online reinforcement learning. In practice, offline RL
methods often fail during online fine-tuning by interacting with the environment.
This offline-to-online RL setting is challenging due to: (i) the sudden distribution
shift from offline data to online data. This could lead to severe bootstrapping
errors which completely distorts the pre-trained policy leading to a sudden per-
formance drop from the very beginning of online fine-tuning, and (ii) constraints
enforced by offline RL methods on the policy to stay close to the behavior policy.
While these constraints help in dealing with the sudden distribution shift they
significantly slow down online fine-tuning from newly collected samples.

We propose to adaptively weigh the offline RL constraints such as behavior
cloning loss during online fine-tuning. This could prevent sudden performance
collapses due to the distribution shift while also enabling sample-efficient learn-
ing from the newly collected samples. We propose to perform this adaptive
weighing according to the agent’s performance and the training stability. We
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start with TD3+BC, a simple offline RL algorithm recently proposed by [3]
which combines TD3 [4], a widely used off-policy RL algorithm, with a simple
behavior cloning loss, weighted by an α hyperparameter. We adaptively weigh
the α hyperparameter using a control mechanism similar to the proportional
derivative (PD) controller. The α value is decided based on two components:
the difference between the moving average return and the target return (propor-
tional term) as well as the difference between the current episodic return and
the moving average return (derivative term).

We demonstrate that these simple modifications lead to stable online fine-
tuning after offline pre-training on datasets of different quality. We also use a
randomized ensemble of Q functions [5] to further improve the sample-efficiency.
We attain state-of-the-art online fine-tuning performance on locomotion tasks.

2 Stable Offline-to-online Reinforcement Learning

2.1 Offline Pre-training

Offline RL aims to learn a policy from pre-collected fixed datasets without in-
teracting with the environment [1, 2, 6, 7, 8, 9]. [3] proposes TD3+BC, a simple
offline RL algorithm that regularizes policy learning in TD3 with a behavior
cloning loss that constraints the policy actions to stay close to the actions in
the offline dataset D. This is achieved by adding a behavior cloning term to the
policy loss:

πθ = argmaxθ E(s,a)∼D

[

Q̄(s, πθ(s))− α(πθ(s)− a)2
]

(1)

where α is a weighing hyperparameter and

Q̄(s, πθ(s)) =
Q(s, πθ(s))

1
N

∑

si,ai
Q(si,ai)

normalizes the Q values which help in balancing both losses. The sum in the
denominator is taken over a mini-batch and the gradients do not flow through
the critic term in the denominator.

Furthermore, we propose to use an ensemble of Q functions to better deal
with the distribution shift from offline pre-training and to improve the sample-
efficiency of online fine-tuning. We use the Randomized Ensembled Double Q-
learning (REDQ) method proposed by [5] to learn an ensemble of critic networks.
Specifically, we maintain an ensemble of N critic networks and randomly samples
M networks for each critic update. Given a mini-batch B of B transitions
(s,a, r, s′), all critic networks in the ensemble are updated as:

∇φi

1

|B|

∑

(s,a,r,s′)∈B

(

Qφi
(s,a)− r − γ min

i∈M
Qφi

(s′,a′)
)2

(2)

where M is a random subset of M critic networks, Qφi
is the i-th Q function

parameterized by φi. We observed that taking the minimum over randomly
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sampled M networks to calculate the target is better than taking the average or
minimum over all N networks.

2.2 Online Fine-tuning with Adaptive Regularization

RL agents trained from offline data tend to have limited performance and would
further need to be fine-tuned online by interacting with the environment. During
online fine-tuning, the performance of the pre-trained agent may collapse quickly
due to the sudden distribution shift from offline data to online data, as shown
in Fig. 1 (with α = 0). Keeping the constrain used in offline pre-training, such
as in Equation 1, could mitigate the collapse. However, this will force the policy
to stay close to the behavior policy (used to collect the dataset), thus leads to
slow improvement.

In the TD3+BC algorithm we consider in this paper, a hyperparameter α

is used to balance the RL objective and the behaviour cloning term which con-
strains the policy to stay close to the behavior policy (see Equation 1). We
use αoff and αon to distinguish the α hyperparameter value used during offline
and online training respectively. By default, we use αoff = 0.4 aligned with the
TD3+BC paper. In Fig. 1, we present the influence of αon on the TD3+BC
during fine-tuning by trying different values of αon from [0.0, 0.1, 0.3]. We can
clearly see that using the behavior cloning loss with proper αon enables stable
fine-tuning. However, the value of αon depends on the quality of the offline
dataset and has significant influence of the fine-tuning performance. For ex-
ample, αon = 0 fits well on the Hopper-Random task while causes immediate
collapse on Hopper-Medium and Hopper-Medium-Expert tasks.
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Fig. 1: Results of online fine-tuning on the D4RL benchmark using TD3+BC
with different αon hyperparameters. We plot the mean and standard deviation
across 3 runs. Using the behavior cloning loss with proper αon enables the stable
fine-tuning. But the optimal value of αon differs between datasets.

In our experiments, we found that if the offline dataset has narrow distribu-
tion or if the policy has already converged to a desired performance (comparable
to the expert), it is usually beneficial to maintain a higher αon. When the data
distribution is broader or when we still need to improve the agent by a large
margin, a smaller αon works better. However, during experiments, we can not
find a single αon that is suitable for all tasks and its value needs to be tuned
carefully per task, which makes this method hard to be used in practice.
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To solve this problem, we propose to automatically adapt the weight of the
behavior cloning loss according to two factors: (i) the difference between the
moving average return Ravg and the target return Rtar, and (ii) the difference
between the current episodic return Rcur and the moving average return Ravg.
We adaptively change the αon as:

αon ← αon+∆(αon) = αon+(KP ·(Ravg−Rtar)+KD ·max(0, Ravg−Rcur)) (3)

where we constrain αon between 0 and 0.4 (the value used during offline pre-
training). Rcur and Ravg are normalized following the return normalization
procedure used in D4RL [10]. Rtar is the target episodic return, which we set
as 1.0 (corresponding to the expert policy) for all tasks. KP controls how fast
we decrease the αon according to current performance and KD determines how
fast we increase the αon when the performance drops. Intuitively, when the
agent’s performance reaches the target episodic return, we try to maintain it
during fine-tuning while decrease the αon to allow the agent improving further
when the agent’s performance is low. The second term increases the αon when
performance drops during training to mitigate performance collapse. Equation 3
allows for adaptive weighing of the behavior cloning loss throughout online fine-
tuning. It automatically adjusts the constraint enforced by the behavior cloning
loss. Both KP and KD are tuned on the Hopper-Random and Hopper-Medium
tasks (see section 3) via grid search and keep fixed in rest tasks (KP = 3e − 5,
KD = 1e− 4).

3 Experiments

The goal of our experiments is to evaluate the stability and sample-efficiency
of the proposed algorithm on online fine-tuning after offline pre-training on
datasets of different quality. We evaluate our algorithm on the D4RL bench-
mark [10], which includes three locomotion environments (HalfCheetah, Hopper,
and Walker) and each environment consists of four offline datasets: Random,
Medium, Medium-Replay, Medium-Expert.

In Figure 2, we compare our algorithm, called REDQ+AdaptiveBC (REDQ
[5] with adaptive behavior cloning), with two state-of-the-art offline-to-online RL
algorithms, Advantage Weighted Actor-Critic (AWAC) [11] and Balanced Re-
play [12], and two baseline methods, TD3 with finetuning (TD3-ft) and REDQ.
AWAC implicitly constraints the policy network to stay close to the behavior
policy. Balanced Replay [12] prioritizes near-on-policy samples from the replay
buffer. For a fair comparison, we reimplement this algorithm based on TD3+BC
while ensuring that we are able to reproduce the original results. TD3-ft is the
standard TD3 algorithm [4] that was pre-trained offline using TD3+BC [3].
REDQ [5] is an RL method trained from scratch, without any access to the
offline data. This baseline emphasizes the importance of offline pre-training and
online fine-tuning.

During offline pre-training, all algorithms are pre-trained on the offline dataset
for one million gradient steps. After pre-training, we fine-tune the agents for

548

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

R
e

tu
rn

s

HalfCheetah-Random

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

HalfCheetah-Medium

0 50 100 150 200 250

0

2000

4000

6000

8000

HalfCheetah-Medium-Replay

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

14000
HalfCheetah-Medium-Expert

0 50 100 150 200 250

0

1000

2000

3000

4000

R
e

tu
rn

s

Hopper-Random

0 50 100 150 200 250

0

1000

2000

3000

4000

Hopper-Medium

0 50 100 150 200 250

0

1000

2000

3000

4000

Hopper-Medium-Replay

0 50 100 150 200 250

0

1000

2000

3000

4000

Hopper-Medium-Expert

0 50 100 150 200 250

Time Steps (1e3)

0

1000

2000

3000

4000

5000

R
e

tu
rn

s

Walker2d-Random

0 50 100 150 200 250

Time Steps (1e3)

0

1000

2000

3000

4000

5000

Walker2d-Medium

0 50 100 150 200 250

Time Steps (1e3)

0

1000

2000

3000

4000

5000

6000

Walker2d-Medium-Replay

0 50 100 150 200 250

Time Steps (1e3)

0

1000

2000

3000

4000

5000

6000

Walker2d-Medium-Expert

Fig. 2: Results of online fine-tuning on the D4RL benchmark. We plot the
mean and standard deviation across 5 runs. Our REDQ+AdaptiveBC method
attains performance competitive to the state-of-the-art. Our method is able to
consistently improve the pre-trained agent during fine-tuning without suffering
from dramatic performance collapse at the beginning of training.

250,000 time steps by interacting with the environment. We evaluate the agent
every 5000 time steps and each evaluation consists of 10 episodes. We attain per-
formance competitive to the state-of-the-art in this benchmark with our method
stably improving the performance during online fine-tuning.

We outperform REDQ and TD3-ft on all tasks by a large margin. Compared
to AWAC, our method consistently improves the pre-trained policy and outper-
forms or matches other methods on all tasks, among different environments and
different datasets. Compared to Balanced Replay, our method does not collapse
dramatically on all three Medium-Expert tasks. Furthermore, we want to stress
the simplicity of our methods. Balanced Replay needs to learn an additional
network to estimate the ”closeness” of the sampled data with the current policy,
and AWAC is incompatible with other offline pre-training algorithms. While
our algorithm can be modified within lines of code based on the TD3+BC and
it is straightforward to apply our methods to other existing offline pre-training
algorithms, such as Conservative Q-Learning (CQL) [13].

4 Conclusion

We consider the problem of offline-to-online RL where an agent is first pre-
trained on offline data (collected by a possibly unknown behavior policy) and
the agent is then fine-tuned online by interacting with the environment. This is
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desirable as pre-trained agents may have limited performance depending on the
quality of the offline dataset. Offline-to-online RL is challenging due to the sud-
den distribution shift from offline data to online data, and also the constraints
enforced by offline RL algorithms (such as a behavior cloning loss) during pre-
training. In this paper, we propose a simple mechanism to adaptively weigh a
behavior cloning loss during online fine-tuning, based on agent’s performance
and training stability. We further combine a randomized ensemble of Q net-
works to enable sample-efficient online fine-tuning performance. We achieve
performance competitive to the state-of-the-art online fine-tuning methods on
twelve locomotion tasks in the popular D4RL benchmark.
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