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Abstract. With the rise of A.I. methods the demand for efficient op-
timization methods that are easy to implement and use increases. This
paper introduces a simple optimization method for numerical blackbox
optimization. It proposes to apply covariance matrix estimation for the
(141)-ES with Rechenberg’s step size control. Experiments on a small
set of benchmark functions demonstrate that the approach outperforms
its isotropic variant allowing competitive convergence on problems with
scaled and correlated dimensions.

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) has set stan-
dards in the field of blackbox numerical optimization. It is based on learning
a covariance matrix that allows adaptation to local search space characteris-
tics. Several variants have been proposed throughout the history of evolutionary
strategies. A simple but effective one is the (14+1)-CMA-ES [5], which combines
the one (1+1)-ES with a variant of the Rechenberg rule. The covariance matrix
is adapted like in the original CMA-ES, a Cholesky variant is also proposed.

This paper goes one step further and proposes an even easier to implement
and handle variant that is based on the estimation of the covariance matrix.
The integration of a simple covariance matrix estimator based on a sliding win-
dow of the best solutions for a (141)-ES with Rechenberg’s 1/5th success rule
allows the approximation of optima in solution spaces with correlated dimen-
sions. The approach assumes that the estimation of the covariance matrix in
black-box optimization is not the computational bottleneck. More important is
the minimization of the number of fitness function calls, i.e., for estimation of
the covariance matrix and for the optimization process with its precise estimate.

This paper is structured as follows. Section [2] gives an overview of ES vari-
ants related to step size control and covariance matrix adaptation. Section
introduces the covariance matrix estimation ES with Rechenberg’s step size con-
trol (CMR-ES), which is experimentally analyzed in Section 4| Conclusions are
drawn in Section [l
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2 Related Work

Parameter control has an important part to play in ES. The choice of optimal
strategy variables or hyperparameters like population sizes and step sizes can
have a significant impact on its effectiveness. Besides constant parameters or
static parameter control strategies like linear mutation rate decrease, adaptive
techniques like Rechenberg’s rule, see Section[3] take into account feedback from
the search.

Self-adaptation [10] allows multivariate Gaussian mutations with indepen-
dent step sizes per dimension by adding the step size vector to the chromosome
of the solution. While being evolved together with the objective variables with
crossover and mutation, successful step sizes have a high probability to domi-
nate during the optimization process. Selection noise is the case of a random
decoupling between the magnitude of step sizes and the realizations of their ran-
dom numbers. Large population sizes or the derandomized self-adaptive ES [4]
overcome selection noise. The latter changes step sizes and objective variables
with the same randomly drawn numbers applying them to strategy and objective
variables.

To consider the movement of solutions during the search, an evolution path
ES [§] estimates the length of the advancement of movements in certain directions
of the solution space and compares it to the expected size of mutations for step
size adaptation.

The CMA-ES [3] approximates the covariance matrix of the best solutions
and combines it with the evolution path principle for step sizes and the covariance
matrix with its rank-1 and rank-p updates. The (1+1)-CMA-ES [5] allows the
approximation of a covariance matrix with a simple CMA-ES with Rechenberg
1/5th success rule. Based on an extended success rule that has influence on
the covariance matrix update, this relatively simple variant shows competitive
results. The ES proposed in this paper is an even simpler variant than the
(141)-CMA-ES, but is still competitive.

Other CMA-ES variants exist, which mainly aim to simplify the original, e.g.,
the self-adaptive CMSA-ES [I], which applies the principle of self-adaptation to
the covariance matrix. Another example is the matrix adaptation ES (MA-
ES) [2], which replaces the construction of the covariance matrix by a transfor-
mation matrix. A memory-efficient variant has been introduced in [6].

A relatively late development is the natural evolution strategy (NA-ES) [I1],
which treats the search parameters as distribution and performs gradient as-
cent in the space of distribution parameters. With Monte Carlo estimation the
distribution parameters like covariance matrix and step sizes for scaling the dis-
tribution are determined. Convergence of NA-ES on the SPHERE function has
been analyzed in [9].
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3 CMR-ES

The goal of covariance matrix adaptation is to learn covariance matrix C and
step size o for efficient approximation in multimodal blackbox optimization prob-
lems. Decoupling learning covariance matrix and step sizes simplifies the learning
process.

As a simple covariance matrix ES this paper proposes to employ covariance
matrix estimation in a (141)-ES using Rechenberg’s 1/5th step size control, see
Figure [I} For the estimation a simple covariance matrix estimator available in
many programming languages can be used.

The estimation of C is based on a sliding window approach that keeps an
archive A of the n best solutions of the last successful generations. At the
beginning A is empty. When A reaches size 7, covariance matrix C is estimated
to capture the curvature of the fitness landscape, see Figure[2| The (141)-CMR-
ES generates an offspring solution x’ from a parental solution x with Gaussian
mutation:

x' :=x+0-N(0,C) (1)

where N (0, C) generates an N-dimensional vector of random numbers with cen-
ter 0 and covariance matrix C.

Algorithm 1: CMR-ES
1: givend~+vN+1,k,m
2: initialize x € RY,0 € RT, A = ||
3: repeat

4:  every k gen. estimate C with A
5. x :=x+0-N(0,C)
6: o.=0- expl/d(]lf(x/)sf(x) — 1/5)
7. if f(x') < f(x) then < >
: i ! X1
8: replace x with x .
9: A = A[l : n].append(x)
10:  end if

11: until termination condition

Fig. 1: (1 + 1)-CMR-ES with Rechen- Fig. 2: Estimation of C with 7
berg’s step size control last best solutions (blue) neglect-
ing older/worse offspring (grey).

The Rechenberg 1/5th rule increases step size o by multiplication with exp(4/5),
if the success probability is larger than 1/5, and decreases ¢ by multiplication
with exp(—1/5), if the success probability is smaller than 1/5:

oci=0- expl/d(ﬂf(x/)gf(x) —1/5) (2)

with scaling parameter d. Indicator function Ix)<f(x) delivers 1 in case of
improvement, i.e., f(x') < f(x) is true for minimization problems, and 0 oth-
erwise. This adaptatlon reaches a stationary case, if the success probability is
1/5, which has been shown to allow nearly optimal progress on many functions.
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Based on their fitness, offspring or parent are selected for the next gener-
ation. A new best solution is put into archive A, while the worst solution is
removed. The problem dependent frequency of re-estimations of C is specified
by parameter k.

4 Experiments

This section presents an experimental analysis on a scaled version of the SPHERE
function, i.e., SCALED SPHERE with NV = 5 and scaling vector w = (103,1,1,...),
and on ROSENBROCK with NV = 5, see Section [A]

SCALED SPHERE ROSENBROCK

ES 21.87 + 18.47 0.28+3.6-1072
CMA-ES | 45-1072° +£6.5-1072° 70-10722+1.1-10722
CMR-ES | 2.2-10735+6.7-1073% | 1.2-107'*+3.2.-107*

Table 1: Comparison between (1+1)-ES, CMA-ES, and (1+1)-CMR-ES on
SCALED SPHERE and ROSENBROCK with N = 5 after 3,000 fitness function
evaluations.

Table [ shows means and standard deviations of final fitness values achieved
at the end of each 100 runs of the (141)-ES with Rechenberg’s 1/5th success rule,
a (1,8)-CMA-ES, and the (141)-CMR-ES. Both (1+1)-ES variants use mutation
parameter d = v/6. All ES employ 3, 000 fitness function evaluations. The CMR-
ES uses archive size n = 20 and estimates C every x = 200 generations.

The results show the CMR-ES clearly outperforms the standard (1+1)-ES,
showing its approximation capabilities in solution spaces with scaled and cor-
related dimensions. It outperforms the CMA-ES on SCALED SPHERE and is
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Fig. 3: Logarithmic fitness development of each ten exemplary runs of the (1+1)-
CMR-ES (a) on SCALED SPHERE and (b) on ROSENBROCK with N = 5.
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outperformed on ROSENBROCK, while not getting stuck on the latter.

The desired log-linear approximation of optima can also be observed in Fig-
ure 3| which shows the fitness developments of each 10 random runs of the (141)-
CMR-ES on SCALED SPHERE and on ROSENBROCK on a logarithmic scale. The
covariance matrix re-estimation results in numerous phases of different approx-
imation speeds.

5 Conclusions

Covariance matrix adaptation strategies are state-of-the-art blackbox optimiza-
tion methods in numerical blackbox optimization. To simplify things, this paper
revisits the (14+1)-CMA-ES principle and proposes a combination of covariance
estimation and the Rechenberg 1/5th success rule. The covariance matrix es-
timation is based on a sliding window of the best solutions generated during
evolution. The computational complexity of the covariance matrix estimation
step of modern implementations can rarely be a bottleneck in practical opti-
mization. More important are savings of potentially expensive fitness function
evaluations. Furthermore, the CMR-ES has few problems with numerical insta-
bilities, when handling the covariance matrix.

Future experimental comparisons will concentrate on tuning hyperparame-
ters and experiments on an extended set of numerical test functions considering
comparisons to CMA-ES variants like the (1+1)-Cholesky-CMA-ES [5].

A Benchmark Functions

The experimental analysis is based on the following numerical blackbox mini-
mization test functions:

1. SCALED SPHERE:

fx) = (wx)" - (wx) (3)
with w = (10%,1,1,...), initialization x° = 1, optimum x* = 0 with
£(x) = 0.0

2. ROSENBROCK:
N-1
Fx) = [100- (w1 —27)° + (1 — 2)°] (4)
i1

initialization x° = 0, optimum x* = 1 with f(x) = 0.0

B Source Code

The CMR-ES in the experimental analysis is implemented in PYTHON. The
covariance matrix estimation is based on the function NUMPY.CcOV. The source
code is available on |GitHub. The CMA-ES experiments are based on the CMA-
ES of the CMAES PYTHON package (Version 0.8.2) [7].
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