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Abstract. The paper presents a novel application of artificial neural
networks (ANNs) in the context of surrogate models for black-box opti-
mization, i.e. optimization of objective functions that are accessed through
empirical evaluation. For active learning of surrogate models, a very im-
portant role plays learning of multidimensional normal distributions, for
which Gaussian processes (GPs) have been traditionally used. On the
other hand, the research reported in this paper evaluated the applicabil-
ity of two ANN-based methods to this end: combining GPs with ANNs
and learning normal distributions with evidential ANNs. After methods
sketch, the paper brings their comparison on a large collection of data from
surrogate-assisted black-box optimization. It shows that combining GPs
using linear covariance functions with ANNs yields lower errors than the
investigated methods of evidential learning.

1 Introduction

One of the key kinds of optimization is nowadays black-box optimization, i.e.
optimization of objective functions that are accessed not through analytical de-
scription, but through empirical evaluation, e.g. measurements, simulation, ex-
periments. Expectedly, it uses optimization methods requiring solely objective
function values. They typically need a large number of function values, a serious
disadvantage in view of the fact that the empirical evaluation is often expen-
sive in terms of time and/or money. To decrease the number of such expensive
evaluations, black-box optimization can be assisted by surrogate modeling : the
true black-box objective is evaluated only in some points whereas it is predicted
with a suitable regression model elsewhere. A surrogate model can be trained
using active learning – retraining it after including those points not yet originally
evaluated that are according to some criterion the most appropriate.

For criteria like expected improvement and probability of improvement, it is
necessary that the surrogate model estimates the whole probability distribution
of function values. There are two principally different kinds of such estimates:
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empirical probability distributions, and parameterized distributions from an as-
sumed family of distributions with parameters estimated from the data. For the
latter kind, the Central Limit Theorem suggests to assume a family of normal
distributions unless application-domain reasons indicate a different one. In the
surrogate modeling context, empirical probability distributions are used with
random forests, and normal distributions with Gaussian processes (GPs).

The last decade brought two approaches in which normal distributions are
learned using artificial neural networks (ANNs):
(i) combining GPs with ANNs, in all layers [5], or in the last [12];
(ii) learning normal distributions with evidential ANNs [1, 7, 11].
Both approaches were developed outside the area of surrogate modeling and our
research is to our knowledge a first attempt to evaluate their applicability to
that area. The paper brings their comparison on a large collection of data from
surrogate-assisted black-box optimization. After methods sketch in the subse-
quent two sections, main results of their comparison are presented in Section 4.

2 Estimation of normal distributions in Gaussian pro-
cesses

A Gaussian process on a set X ⊂ Rd, d ∈ N is a collection of random variables
(f(x))x∈X , any finite number of which has a joint Gaussian distribution [10].
It is completely specified by a mean function µ : X → R, typically assumed
constant, and by a covariance function κ : X ×X → R such that for x, x′ ∈ X,
Ef(x) = µ, cov(f(x), f(x′)) = κ(x, x′). A GP is then often denoted or GP (µ, κ).

The value of f(x) is typically accessible only as a noisy observation y =
f(x) + ε, where ε is a zero-mean Gausssian noise with a variance σn > 0. Then
cov(y, y′) = κ(x, x′)+σ2

nI(x = x′), where I(proposition) equals for a true propo-
sition 1, for a false proposition 0.

Combining Gaussian processes and neural networks (NN-GP) The ap-
proach integrating a GP into an ANN as its output layer was proposed in [12].
It relies on the following two assumptions:

1. ANN with nI input neurons computes a mapping net from RnI into the
set X on which is the GP. The number of output neurons is the dimension d,
and the ANN maps an input v into a point x = net(v) ∈ X, corresponding to
an observation f(x+ ε) governed by GP. From the point of view of the ANN
inputs, the GP is now GP (µ(net(v)), κ(net(v),net(v′))).

2. The GP mean µ is assumed to be a known constant, thus not contributing
to the GP hyperparameters and independent of net.

Therefore, the trainable parameters of this combined model are parameters of
the GP θκ and the network weights θW . Consider now n inputs to the neural
network, v1, . . . , vn, mapped to the inputs x1 = net(v1), . . . , xn = net(vn)
of the GP, corresponding to observations y = (y1, . . . , yn)

⊤. Then the log-
likelihood of θ is L(θ) = ln p(y;µ, κ, σ2

n) where µ is the constant assumed
in Assumption 2., and (K)i,j = κ(net(vi),net(vj)). This allows the model
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parameters to be trained together using smooth optimization such as gradient
descent.

3 Estimation of normal distributions in evidential neural
networks

Evidential neural networks learn the parameters of a prior distribution on a set
of probabilistic models. A crucial property of evidential ANNs is that they follow
the basic principle of the Dempster-Shafer theory of evidence, to fall back onto
a prior belief for unfamiliar (out-of-distribution) data. A number of evidential
ANNs have been proposed (cf. [11] for a survey), the probably best known being
prior networks, in which the probabilistic models are multidimensional normal
distributionsN (µ,Σ) and the network learns the parameters of a normal-inverse-
Wishart distribution NW−1(m,S, κ, ν) , which is a conjugate prior to normal
distributions.
Density Networks (DN) Neural networks are trainable non-linear functions.
Density networks (DN) predict probability density function instead of one
value. The networks must be trained according to selected densities. There
are several ways to train density networks, the most common is to maximize
the likelihood of training samples. In our case, the network predicts normal
distribution, so the output consists of two values – the mean value function
and the standard deviation. Ensembles of DN (Ens) are useful tool to
improve overall robustness to out-of-domain inputs [9, 6].

Distillation from the Ens (EnD) An ANN ϕ learning parameters of a normal
distribution is said to destil from an ensemble θ1, . . . , θM of DNs if it is most
similar to that ensemble in the sense of minimizing the expected KL divergence
of the distributions parametrized by the outputs of θ1, . . . , θM from the output
of the distribution parametrized by the output of ϕ [9, 8]:

1

NM

N∑
i=1

M∑
m=1

KL
[
p
(
y | x(i),θ(m)

)
∥p

(
y | x(i),ϕ

)]
(1)

where P̂(x) is the empirical distribution of the ensemble if the input is x, N
is the size of training dataset.

Distribution Distillation from the Ens (EnD2) In this case, the trained net-
work ϕ is above mentioned prior network learning parameters of NW−1. It is
trained by minimizing the expected negative log-likelihood of the ensemble’s
distribution:
Ep̂(µ,Σ,x)[− ln p(µ,Σ | x;ϕ)] = Ep̂(x)[KL[p̂(µ,Σ | x)∥p(µ,Σ | x;ϕ)]] + Z (2)
where Z is a constant.

4 Experimental comparison

To assess the performance of the ANN-based surrogate models, we compared
their results on an offline dataset extracted from many black-box optimization
runs. For the evaluation of the models summarized in previous sections, we used
their original Python implementations by the authors of those models?
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4.1 Employed data

We decided to utilize the large amount of data collected during our previous
research using DTS-CMA-ES [2], a surrogate-assisted version of the state-of-
the-art black-box optimizer CMA-ES [3]. This allowed us to effectively evaluate
the surrogate model on its own without having to repeat the time-consuming op-
timization. Those data were collected on the COCO platform [4], from which we
used 23 of the 24 noiseless functions, skipping the easy linear slope in dimensions
2, 3, 5, and 10. We had available altogether more than 1.6 million iterations
(CMA-ES generations) each of which apart from the first can be used for evaluat-
ing surrogate models, trained on samples from the previous generations. In spite
of that large amount of available data, there is typically only a small number of
relevant training points in the current search area of DTS-CMA-ES, computed
by the original objective function.

4.2 Experiment setup

We compare five different surrogate models. The first is the combined NN-GP
outlined in 2 using linear covariance function. The next four models are different
variations of the Prior networks described in 3.

For the ANN-GP combination, the above mentioned small amount of avail-
able training data in the area searched by CMA-ES incited us to use a multilayer
perceptron with a single hidden layer, containing at most 5 neurons. As the acti-
vation function for both the hidden and the layer, we chose the logistic sigmoid.
We trained the weights and biases of the neural network together with the pa-
rameters of the Gaussian process.

The Density Networks have 5 layers of 200 neurons each with ELU activation
function and 5% dropout rate. Small (σ = 0.05) Gaussian perturbation was
applied on the input. We use 75-25 train-test split and mini-batches of size
5, 600 warm-up steps with learning rate of 0.001 final learning rate. All sub-
models in the ensemble were trained in the same way with different initialization.
The EnDis trained using a smoothed KL divergence where a temperature is
continuously lowered, in order to bring the means closer together. Similarly to
the EnD, the EnD2is also trained using temperature. Firstly, it is focused on
the mean of the distribution, and later it optimizes all parameters based on the
loss function.

4.3 Comparison results

The metric we used to assess the performance of each model is the ranking
difference error (RDE), which only reflects the ordering of values, due to the
invariance of CMA-ES with respect to monotone transformations. Because the
CMA-ES algorithm uses the surrogate model to select the most promising candi-
dates for true evaluation, the metric considers only k best samples. The range of
the RDE metric is [0, 1], it equals 0 for the exact ordering of the first k smallest
values and 1 for the reverse order. The complete formula and description can be
found in [2].
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We aggregated the resulting RDE computed for every CMA-ES generation,
with enough training samples in Table 1. In which is clearly visible that the
NN-GP model with linear kernel performs better than other examined models.
We verified the results using Friedman test, subsequently Wilcoxon signed-rank
test with Holm correction was performed for all pairs of tested models. The test
confirmed that all differences between models are statistically significant.

Table 1: Aggregated results of the models for each dimension and type of function. SEP
– separable functions; MOD – low or moderate conditioning; HC – high conditioning
and unimodal; MMA – multi-modal with adequate global structure; MMW – multi-
modal with weak global structure.

HH
HHHf

κ
NN-GP DN Ens EnD EnD2

D
im

.
2

SEP 0.252 0.492 0.493 0.497 0.532
MOD 0.341 0.512 0.511 0.513 0.534
HC 0.204 0.509 0.508 0.512 0.535

MMA 0.416 0.512 0.511 0.514 0.535
MMW 0.443 0.507 0.506 0.510 0.531

all 0.334 0.502 0.499 0.506 0.533

D
im

.
3

SEP 0.194 0.460 0.458 0.466 0.521
MOD 0.262 0.478 0.477 0.483 0.519
HC 0.174 0.488 0.487 0.492 0.524

MMA 0.353 0.495 0.493 0.497 0.522
MMW 0.387 0.499 0.497 0.503 0.531

all 0.278 0.474 0.472 0.479 0.524

D
im

.
5

SEP 0.227 0.446 0.443 0.452 0.522
MOD 0.260 0.443 0.440 0.447 0.502
HC 0.202 0.471 0.468 0.475 0.516

MMA 0.373 0.480 0.477 0.482 0.511
MMW 0.363 0.479 0.476 0.485 0.531

all 0.289 0.453 0.450 0.458 0.517

D
im

.
1
0

SEP 0.278 0.458 0.452 0.463 0.507
MOD 0.285 0.426 0.422 0.430 0.487
HC 0.206 0.464 0.460 0.467 0.503

MMA 0.422 0.500 0.496 0.499 0.518
MMW 0.363 0.475 0.471 0.480 0.524

all 0.313 0.449 0.445 0.452 0.497
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Fig. 1: Overall results of the evaluation. NN-GP model was significantly better than
the rest of the models. EnD2 is the worst but has the narrowest confidence interval.
The Ens improve DN only by small insignificant amount.
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5 Conclusion

We examined various ANN based models for normal distribution estimation
in the black-box optimization setting. We outlined five different models and
evaluated them on large dataset collected in previous research.

The pure deep neural network-based models were significantly worse then the
stacking of shallow neural networks on the Gaussian process. It can be explained
by the dependence of the deep networks on the performance of density networks
(DN). Because DN does not perform well, the ensemble and distillation methods
can hardly be better. The main focus should be to optimize the architecture and
learning process of the DN or replace it altogether. Needless to say, before any
of the investigated approaches can be used in real-world black-box optimization,
they have to be compared also with the state-of-the art approach based on GPs
alone.
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