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Abstract. Being able to estimate a test execution time is of fundamental
importance when you need to prioritize tests. Furthermore, it is also im-
portant that an estimation algorithm do not underestimate the execution
time, since time can be a hard constraint in many problems. If a test take
longer than expected, some test that is planned to be executed in the future
may have to be cancelled. Under such scenario, in this paper, we developed
two simple variants of the Random Forest regression algorithm to predict
test execution times in storage diagnostics tests. The proposed methods
are compared to a baseline time estimation method (already available in
a commercial product) and other machine learning based models. On the
basis of our experiments we can state that the proposed variants achieved
promising results when considering an asymmetric error metric.

1 Introduction

Software for failure diagnostics in electronic components is a key feature in many
computational systems [1]. Nowadays, most computer manufacturers have de-
veloped their own diagnostics solution or incorporated third party tools as an
important item in their products. Among all monitored components, storage
devices are responsible for a significant amount of failures. Hence, being capa-
ble to detect incipient failures may avoid severe data losses that will incur in
increasing costs and also increase service availability [2].

Although diagnostics systems are available is most computational platforms,
in practice, testing faces limitations of time and budget [3]. Since testing re-
sources (time, budget, testers, etc.) are limited, if all the test cases are executed,
it may lead to the over usage of resources. Nevertheless, executing less number
of test cases may lead to unidentified faults [4].

Given such scenario of resource limitations, it is important to identify criteria
that can be used to select the subset of available tests that shall be executed.
One can argue that execution time is one important criterion of the decision
making problem [5]. If execution time can be predicted, it will help testers to
plan the execution of test cases well in advance [4].

Thus, in this work we developed two computational algorithms to predict the
execution time of a storage diagnostics test. The proposed methods are variants
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of the well known Random Forest (RF) regression algorithm. More specifically,
we proposed two simple ways to combine the regression trees generated by the
RF. The main objective of our methods is to provide execution time estimates
that do not underestimate the real execution time. In this setting, the prediction
algorithm is conservative since it considers the cost of underestimating to be
higher than the cost of overestimating. Such characteristic is desirable given
that the time may be a hard constraint in real life applications.

2 Background

In this section, we describe the storage test whose execution time we aim to
predict and introduce the basic concepts of RF for regression.

2.1 Storage Diagnostics Test

The test we aim to predict the execution time is the Linear Read Test. It is
a common test used in many storage diagnostic tools. This test scans storage
devices checking for bad blocks, using two-step read sector block verification.
The test can also be customized with parameters. As parameters of this test, we
have start and end range, they define the testing area and coverage defines the
percentage of logical sectors that will be tested within the defined area. These
test parameters range from 0% to 100%, and the start parameter must be smaller
than the end parameter.

The diagnostic application gives us an estimated time to complete the tests,
what we will call the baseline estimation, and was granted by hard code following
previous observation on many machines. This baseline was used on our machine
learning models to improve results.

2.2 Random Forest

A Random Forest [6] is an ensemble averaging machine learning model defined
by a collection of M decision tree predictors t(x; θm),m = 1, . . . ,M , where
x represents the data point of the input data D and θ are independent and
identically distributed outputs of a randomizing variable. For the regression
task, the prediction ŷ of a data point x can be defined as the unweighted average
of the predictions of the trees as the following:

ŷ =

∑M
m=1 t(x; θm)

M
(1)

Each tree of the Random Forest is a set of decision nodes and leaf nodes.
The decision nodes takes a feature of the input, evaluates the feature by a split
condition and passes the data sample to its branches accordingly. In the training
phase, the parameters θ of the split are optimized to make the best split. In the
regression task, usually the splits are evaluated by the residual sum of squares
(RSS)[6].
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To improve the performance of an ensemble model we need decision trees
to be diversified, this is done by using two well known strategies: bagging and
feature randomness. The first strategy is a statistical re-sampling technique that
takes random samples with replacement to construct a new dataset with the
same size as the original dataset. The second, takes a random set of features.
By using these two techniques, each decision tree in the collection will train
with a different sampling of the dataset and with an different feature set, thus
producing different trees.

3 Proposed Methods

In this section, we propose two random forest variants that can produce biased
predictions. Such strategies are useful in our application since underestimat-
ing and overestimating the test execution time may have significantly different
impacts.

3.1 Asymmetric Random Forest with Weighted Trees (ARFWT)

Let ŷj , j ∈ 1 . . .M be the predicted value of each tree of the Random Forest and
let ŷ be the default predicted value of the Random Forest defined as the mean
of the outputs of the trees. We can define ŷ−k , k ∈ 1 . . .K,K ≤ M as the values
of ŷj such that ŷj ≤ ŷ. And we can define ŷ+l , l ∈ 1 . . . L, L ≤ M as the values
of ŷj such that ŷj > ŷ.

In other words, we can split the predicted values of the trees of the Random
Forest in two sets: the trees that predicted a value smaller than the mean (ŷ−k )
and the trees that predicted a value bigger than the mean ŷ+k . With this we can
define a new combination of the output of the trees as defined in the following
equation:

ŷ′ =

∑K
k=1 ŷ

−
k +

(∑L
l=1 ŷ

+
k ∗W

)
M

(2)

where W > 1.0 is a hyper-parameter defining the weight we want to consider
to the values above the mean value of the prediction. For example, a value of
W = 1.10 means we are adding 10% to the predicted output of the trees that
produce output that are bigger than the average prediction.

3.2 Asymmetric Random Forest with Biased Estimates (ARFBE)

Let ŷj , j ∈ 1 . . .M be the predicted value of each tree of the Random Forest and
let ŷ be the default predicted value of the Random Forest defined as the mean
of the outputs of trees. We can define a method of combination of the outputs
as:

ŷ′′ = W ∗ ŷ (3)
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where W > 1.0 is a hyper-parameter defining how much of the original
prediction value we want to increase. For example, a value of W = 1.10 mean
we are adding 10% to the original predicted output.

4 Experiments and Results

4.1 Dataset

The dataset is compound by 14 machines each has 40 executions of the Linear
Read Test described above, diversifying the parameters start, end and coverage.
The storage size of the machines vary in the range of 128Gb to 1Tb. The
features used in the model are: “Start” test parameter, “End” test parameter,
“Coverage” test parameter, Storage size, Logical sector size, Logical sectors,
Used storage space, Free storage space and Machine memory size.

The test parameters are percentages and therefore can range from a large
domain. In order to build the dataset, these parameters were discretized from
the domain 0%-100% to [0%, 25%, 50%, 75%, 100%] and for each combination
an execution of the test was performed to retrieve the baseline (application
estimation) and the actual execution time.

4.2 Experimental Procedure

To simulate real scenarios of the use of execution time prediction, instead of the
usual split of the examples row-wise, the train-test split was done on machines,
separating the diagnostic executions of 9 machines as the train set and the
diagnostic executions of 5 machines is the test set.

To evaluate the use of machine learning in this task to improve the execution
time estimation, we choose a linear regression with L2 regularization, a regular
Random Forest and our two proposed methods. We chose Random Forests as
a basis prediction algorithm because its averaging combination of predictions
reduces prediction variance [7]. Besides that Random Forest is a powerful non-
linear regression model that have succeeded in many applications.

In our experiments we used 100 trees in all the types of Random Forests.
Also, we tried three different values of the weight W to our proposed methods:
1.10, 1.15, and 1.20. Those values were used to verify the impact in the results.

To measure the performance of all methods we used two metrics. The first
one is the Root Mean Squared Error (RMSE), a standard metric for regression
tasks. Also, in regard to one of our motivations, we wanted to assess the perfor-
mance to penalize underestimates. To do so, we modified the RMSE to create a
new metric named Asymmetric Root Mean Squared Error (ARMSE). This new
metric is similar to RMSE but it increases the weights associated to underesti-
mated predictions (Y > Ŷ ). In our experiments, we set the weight (λ) value to
10.

To run the experiments we used Python version 3.9, along with the scikit-
learn [8] 0.24.2. The proposed methods were developed as modifications of the
original RF in the scikit-learn, respecting their BSD 3-Clause License.

378

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



4.3 Results

Method RMSE ARMSE
Application Baseline 11.7542 36.5968
Ridge Regression 38.4721 58.2050
Random Forest 57.7256 58.4508
ARFWT (10%) 65.8917 66.2140
ARFWT (15%) 70.0188 70.2347
ARFWT (20%) 74.1687 74.3202
ARFBE (10%) 68.6977 68.7861
ARFBE (15%) 74.2621 74.2850
ARFBE (20%) 79.8642 79.8673

Table 1: Execution time estimation errors of all regression methods without
using the baseline estimation as an input. The best results are indicated in bold

Table 1 shows the RMSE and ARMSE metrics for all regression methods. As
can be noticed, no machine learning model was able to outperform the baseline
model. A possible explanation is that the selected features are not enough to
explain the predicted variable. To overcome such problem, we decided to include
the baseline prediction as an additional feature in all models. The results with
this new feature set are presented in Table 2.

Method RMSE ARMSE
Application Baseline 11.7542 36.5968
Ridge Regression 10.5911 24.6585
Random Forest 9.1881 19.0371
ARFWT (10%) 10.8659 17.1199
ARFWT (15%) 12.0356 16.9647
ARFWT (20%) 13.3524 17.2103
ARFBE (10%) 12.5237 16.1025
ARFBE (15%) 15.0825 17.0681
ARFBE (20%) 17.9186 18.9406

Table 2: Execution time estimation errors of all regression methods using the
baseline estimation as an input feature. The best results are indicated in bold

By observing the results presented in Table 2, we can notice that standard
machine learning based models (Ridge regression and Random Forest) outper-
formed the application Baseline algorithm in both metrics. The fact that the
Random Forest algorithm outperformed Ridge regression may indicate that the
mapping between the input features and the execution time is nonlinear.

Analyzing the performance of our methods, we can verify that both AR-
FWT and ARFBE improved the ARMSE metric when compared to the standard
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Random Forest. On the other hand, the RMSEs of both variants in all tested
scenarios are higher than the RMSE of standard the Random Forest. Such be-
havior is expected since our variants tend to penalize more underestimations,
thus compromising the RMSE metric. As previously described, such character-
istic is desirable in execution time prediction applications. We can also notice
that increasing the hyper parameter to penalize underestimations will improve
the ARMSE while degrading the RMSE. Thus, in practical applications the use
of a validation set is recommended to find the optimal hyper-parameter.

Comparing ARFWT and ARFBE we can notice that ARFWT provide a
better compromise between RMSE and ARMSE since ARMSE values are very
similar to the ones of ARFWT and RMSE are significantly better. Such result
is expected because the weighting strategy of ARFWT is less severe since it
weigths just several trees and not the final prediction.

5 Conclusion

In this paper we designed two simple variants of the RF regression algorithm
and used both methods for execution time prediction of a hardware diagnostic
test. The variants were created to provide biased predictions since the methods
shall not underestimate the real execution time. In both models the bias was
introduced by modifying the combination function of RF models.

Based on the experiments we can see that both methods had promising re-
sults since they were able to outperform all other approaches when considering
an asymmetric error metric. It is worth mentioning that the proposed variants
do not affect the training procedure of random forest and only modify the ensem-
ble combination strategy. As a consequence, no additional time is required for
training of testing. In future works, we intend to evaluate the proposed method
in execution prediction tasks on different hardware diagnostics tests.
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