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Abstract. The wind energy forecast is an useful tool for wind farm
production planning, and operation, facilitating decision making in terms
of maintenance, electricity market clearing, and load sharing. This study
proposes a cooperative ensemble learning model, using time series pre-
processing, multi-objective optimization, and artificial intelligence to fore-
cast wind energy generation in two wind farms in Brazil. Multi-objective
optimization is employed to combine variational mode decomposition-
based components of a model with bootstrap aggregation (bagging) and ex-
treme learning machine models. Forecasting accuracy is evaluated through
the root mean squared error, mean absolute error, mean absolute per-
centage error, and Diebold-Mariano hypothesis test. The empirical results
suggest that proposed ensemble learning model achieved better forecasting
performance than bootstrap stacking, machine learning, artificial neural
networks, and statistical models, with values of approximately 12.76%,
25.25%, 31.91%, and 34.76%, respectively, in terms of root mean squared
errors reduction for out-of-sample forecasting.

1 Introduction

Renewable energies are featured as non-polluting and clean energy resources.
Despite the power demand reduction observed over the last two years, due to
strategies to mitigate the new coronavirus pandemic, the generation from renew-
able energy recorded its largest increase [1]. As a consequence of that, those cities
with wind and solar farms had a positive impact on their Human Development
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Index and Gross Domestic Product [2]. Wind power generation is influenced
by climatic and demographic [3] changes, as well as by the wind farms layout
[4]. To ensure reliable forecasting results, the combination of individual models
provides improvements in forecasting performance by averaging model errors,
thus reducing the uncertainty [5]. Cooperative ensemble learning methods can
be applied to the forecasting of time series. It leverages the use of artificial intel-
ligence (AI) models, decomposition, optimization, and feature selection. They
work in the divide-to-conquer scheme, where a set of base models are adopted
to solve the same task. [6].

The proposed ensemble learning model is a cooperative ensemble forecast-
ing model, which integrates different learning strategies to achieve wind power
generation forecasting. It proposes a framework by employing variational mode
decomposition (VMD) and bagging ensemble learning with moving block boot-
strapping (MBB) for resampling the VMD residual [7]. The extreme learning
machine (ELM) handles the VMD components and bootstrap samples. This
choice is based on recent studies where the effectiveness in solving different prob-
lems is highlighted [8, 9]. The median operator is adopted as proposed in Meira
et al [10]. The multi-objective optimization was explored to tune the weights of
the proposed ensemble learning model. The results of the proposed model are
compared with those presented in Ribeiro et al. [11] for 10, 30, 60, and 120-
minutes-ahead predictions for wind power generation considering real-time series
from two wind farms located in Bahia State, Brazil. The forecasting accuracy of
the proposed approach and for the compared models were evaluated applying the
mean absolute error (MAE), RMSE, mean absolute percentage error (MAPE),
and Diebold-Mariano (DM) hypothesis test.

The main contributions can be summarized as follows: The first is related
to evaluating the use of a cooperative ensemble learning model integrating time
series decomposition, bagging, and artificial neural networks (ANNs) for wind
power generation forecasting. Second, comparisons with several types of mod-
els such as statistical, and ANNs are performed. Last, this study evaluates
the proposed framework forecasting in a multi-step ahead forecasting strategy,
considering very-short (10 and 30-minutes-ahead) and short-term (60 and 120-
minutes ahead) horizons, applied to wind time series in the renewable energy
context.

2 Proposed cooperative ensemble learning model for fore-
casting

This section presents all steps adopted to develop the proposed cooperative
ensemble learning model.

Step 1: Firstly, the VMD pre-processing is used to obtain four components
and one residual. Each one of these components represent different features of
the data.

Step 2: Next, considering that the VMD residuals have different sources of
uncertainty, this component is re-sampled through bootstrap strategy proposed
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by Bergmeir et al. [7]. In this study 30 samples were generated taking into
account the results achieved by Ribeiro et al. [11]. In that opportunity, the
authors observed no significant forecasting accuracy improvement by increasing
the samples, and the set of samples assessed were 30, 50, or 100 samples, all of
them generated through moving block bootstrap (MBB). This process is con-
ducted using the bld.mbb.bootstrap function from the forecast package [12]
in R software.

Step 3 The s samples obtained in the previous step and for the VMD com-
ponents are used to train the ELM model. Moreover, time series cross-validation
is employed in training stage using the training set, helping to prevent overfit-
ting. The hyperparameters for each forecasting model were obtained during the
training process through an automatic grid-search using the caret package [13]
from R software. The recursive strategy is adopted to conduct multi-step-ahead
forecasting using each model, the past lagged values are used as input to fore-
cast one-step-ahead. In a trial-and-error strategy, the five past values are used
as inputs. For the desired forecasting window (H = 1, 3, 6, and 12), the forecasts
are computed according to Eq. (1), as follows:

ŷt+h =


f
[
yt, yt−1, . . . , yt−ny+1

]
if h = 1

f
[
ŷt+h−1, . . . , ŷt+1, yt, . . . , yt+h−ny

]
if h ∈ [2, . . . , ny ]

f
[
ŷt+h−1, . . . , ŷt+h−ny

]
if h ∈ [ny + 1, . . . , H],

(1)

where ŷt+h is the forecast value at time t and the forecast horizon up to h,
yt+h−ny and ŷt+h−ny are the previously observed and forecast power generation
lags for ny = 1, 2, 3, 4, 5, 7, 9, 11, 15, 24.

Step 4: After the training for s samples obtained through an MBB using
ELM for the VMD residuals, the final forecasts for this component is defined
by the median operator. Finally, the forecasting for the proposed ensemble is
computed by a weighted sum of the predictions for the modes and residual.
[14]. When all weights are defined as equal to one, it lead to the direct inte-
gration. Non-Dominated Sorting Genetic Algorithm – version II (NSGA-II) [15]
and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
[16] are adopted to apply the ensemble weight tuning by minimizing the MAE
and forecasting errors variance simultaneously.

Figure 1 shows the flowchart for the proposed cooperative ensemble learning
model. To access the models’ performances, MAE, RMSE, and MAPE criteria
are used. The DM test [17] is also applied to compare the forecasting errors.
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Fig. 1: Flowchart of proposed cooperative ensemble learning model.
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3 Results

The proposed model was applied to forecast wind power production for two dif-
ferent wind farms, considering 10 minutes up to 120 minutes ahead. The ground-
truth for comparisons with predicted values, both are presented in Figures 2-a
and 2-b. The proposed model is compared with stacking ensemble learning and
competitive bagging stacking ensemble learning model, support vector regression
(SVR), k-nearest neighbors (KNN), random forest (RF), and eXtreme gradient
boosting (XGBoost). Next, comparisons are performed with statistical models
named autoregressive integrated moving average (ARIMA), a model specified
by seasonal components based on a Fourier and Box-Cox transforms, autore-
gressive moving average errors, trend, and seasonal component (TBATS), theta
model, and the persistence named Näıve. Finally, some ANNs gated recurrent
unit (GRU), recurrent neural network (RNN), LSTM, CNNs, ELM, and artificial
neuro-fuzzy inference system (ANFIS) are also used for comparison.

Comparing the 10 minutes ahead forecasting results with the ground-truth
for both wind farms, can be inferred that the values related to the peaks and val-
leys were not well assimilated by the model, although the tendency and season-
ality were predicted with excellent accuracy as presented in Table 1. Analysing
the results for 30 and 60 minutes-ahead, it can be noticed that the tendency
and seasonality remain aligned (predicted and real values), and the peak and
valleys values became wiggly with amplitude higher than the observed values.
This behavior is related to the recursive forecasting strategy adopted, leading
to propagating the errors from the past predicted values to the next. On the
other hand, results for 120-minutes-ahead, show an increase in amplitude and
reduction of the oscillatory pattern. Even though, the seasonality and tendency
could be predicted with excellent accuracy.

Through the DM test, it can be stated that in all comparisons, the proposed
model reached statistically lower errors than the other models. The AI models
based approaches reached high differences between the errors to a significance of
1%, and the cooperative model bagging stacking based approach reached similar
errors regarding the proposed framework. These findings are valid for all wind
farms and forecasting horizons.

Table 1: Out of sample results of proposed model versus other models.
WDF

Forecasting
Horizon

Criteria Proposed
Artificial Intelligence [11] Statistical Models [11] Artificial Neural Networks [11]
MBB.
Stacking

Stacking SVR KNN RF XGBoost ARIMA TBATS THETA NAIVE GRU LSTM RNN CNNs ELM ANFIS

1

10-Minutes
RMSE 912.02 1098.64 1200.15 1191.70 1262.64 1239.33 1320.83 1198.56 1192.26 1196.07 1241.66 1437.94 1160.86 1485.66 1178.78 1206.84 1264.44
MAE 663.08 826.52 861.61 842.86 903.00 903.92 954.12 837.07 839.83 838.16 853.51 1090.65 844.50 1077.81 836.14 861.36 893.51
MAPE 13.22% 13.89% 14.75% 14.97% 16.02% 15.67% 18.34% 34.78% 41.42% 35.29% 31.42% 22.53% 14.03% 21.81% 18.92% 14.8% 42.54%

30-Minutes
RMSE 1205.31 1254.00 1452.63 1441.12 1517.22 1499.55 1584.20 1662.62 1642.53 1655.33 1872.08 1795.24 1546.00 1989.43 1581.33 1459.24 1521.89
MAE 816.97 938.33 1053.04 1030.43 1076.50 1086.04 1138.98 1188.51 1187.00 1178.43 1323.84 1385.49 1133.43 1464.27 1162.84 1059.56 1075.25
MAPE 13.99% 15.10% 16.41% 16.39% 18.16% 17.63% 20.16% 50.20% 69.53% 51.32% 58.61% 24.76% 18.23% 25.51% 19.15% 16.65% 20.56%

60-Minutes
RMSE 1373.39 1559.15 1806.98 1787.23 1882.32 1860.82 1927.94 2222.61 2186.13 2225.37 2407.73 2151.59 2077.69 2458.85 2029.35 1831.20 1877.14
MAE 950.88 1156.46 1325.05 1293.97 1345.91 1371.64 1399.59 1601.64 1599.04 1597.64 1730.28 1664.95 1491.97 1817.70 1505.87 1351.44 1358.54
MAPE 14.99% 17.13% 19.04% 18.91% 22.27% 21.82% 23.60% 71.82% 117.14% 74.52% 81.31% 27.97% 27.63% 28.85% 22.94% 20.14% 22.76%

120-Minutes
RMSE 1756.43 2154.69 2422.32 2430.56 2499.99 2520.79 2490.30 3277.92 3146.21 3288.62 3260.79 2881.30 2984.38 3392.19 2733.52 2462.14 2521.37
MAE 1143.90 1554.80 1745.51 1733.35 1744.84 1801.24 1731.29 2336.35 2278.82 2339.45 2310.57 2253.81 2173.40 2453.57 2044.01 1784.64 1781.71
MAPE 16.29% 21.00% 22.04% 22.20% 27.60% 26.90% 34.43% 166.88% 252.41% 169.16% 157.42% 31.98% 34.19% 33.29% 25.39% 24.74% 25.39%

2

10-Minutes
RMSE 1763.24 2122.72 2320.20 2303.97 2441.07 2392.08 2571.47 2316.55 2305.50 2312.44 2400.53 2817.19 2493.86 2874.02 2279.21 2333.23 2445.54
MAE 1281.95 1596.52 1665.00 1629.55 1745.76 1743.97 1837.56 1617.87 1624.28 1620.46 1650.12 2094.93 1864.39 2084.89 1615.88 1665.31 1728.68
MAPE 13.32% 13.87% 14.76% 14.97% 16.02% 15.67% 18.31% 34.89% 41.43% 35.29% 31.42% 22.04% 19.97% 21.81% 18.29% 14.76% 42.57%

30-Minutes
RMSE 2330.27 2422.31 2809.51 2786.18 2933.27 2881.23 3075.11 3216.19 3179.78 3200.28 3619.36 3617.00 3341.58 3848.29 3058.10 2821.20 2942.33
MAE 1579.47 1812.34 2035.63 1992.21 2081.24 2081.23 2189.43 2299.06 2298.70 2278.26 2559.43 2729.07 2523.47 2832.04 2245.01 2048.48 2078.81
MAPE 14.05% 15.09% 16.41% 16.39% 18.16% 17.54% 19.98% 50.21% 73.20% 51.32% 58.61% 25.25% 23.56% 25.51% 19.09% 16.65% 16.05%

60-Minutes
RMSE 2655.23 3013.41 3492.37 3455.34 3639.20 3575.85 3757.41 4297.59 4227.69 4302.29 4654.95 4348.95 4262.30 4756.14 3928.28 3540.32 3629.15
MAE 1838.36 2228.96 2560.36 2501.74 2602.14 2632.79 2721.93 3097.76 3096.52 3088.72 3345.21 3291.36 3241.74 3515.35 2901.65 2612.79 2626.52
MAPE 15.09% 17.09% 19.03% 18.91% 22.27% 21.65% 24.21% 72.23% 118.23% 74.52% 81.31% 27.98% 27.26% 28.85% 22.97% 20.14% 22.75%

120-Minutes
RMSE 3395.76 4152.88 4685.49 4699.10 4833.33 4762.98 5060.18 6338.75 6086.57 6357.92 6304.20 5767.75 6204.91 6560.75 5292.01 4760.14 4874.65
MAE 2211.54 3005.33 3375.37 3351.22 3373.45 3438.96 3565.92 4518.28 4417.86 4522.89 4467.10 4466.13 4687.94 4744.70 3949.40 3450.30 3444.64
MAPE 16.59% 20.84% 22.05% 22.20% 27.60% 26.68% 36.07% 167.47% 252.95% 169.15% 157.42% 32.42% 33.68% 33.29% 25.34% 24.74% 27.53%
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Considering all forecasting horizons and all performance metrics presented in
Table 1, when comparing the proposed model in terms of MAPE with AI, sta-
tistical, and ANNs, errors reduction spans 16.63%–37.50%, 62.64%–90.96%, and
31.12%–43.85%, respectively. In all scenarios, the second-best model (smaller
MAPE compared to the proposed model) was the MBB.stacking model, with an
average MAPE of 16.75%. In contrast, the worse model (higher average MAPE)
was the TBATS.

Figures 2-a and 2-b illustrate that the proposed ensemble learning model that
integrates VMD, bagging, ELM, and MOO in the same framework learns the
data behavior, being able to obtain forecast prices similar to observed values.
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Fig. 2: Observed versus predicted values for a) WDF1 and b) WDF2 in test set.

4 Conclusion

The proposed ensemble learning model was able to reduce the forecasting errors
in a average of 26.71% of the comparisons. Indeed, the results demonstrate that
proposed ensemble improves the forecasting accuracy by 12.76% in terms of the
RMSE reduction in relation the bootstrap stacking ensemble learning model.
These results showed that the use of time series decomposition, and in this study,
the VMD allow to enhance the forecasting accuracy by dealing with several
features of the data through of VMD components. In addition, compared with
single stacking and ELM model, the reduction in the forecasting errors spans
23.13%-23.87% for compared forecasting horizons and wind farms. Compared
with statistical models and ANNs, the proposed forecasting model improves the
forecasting accuracy in terms of the RMSE by 34.76% and 31.91%, respectively.
The results of this study offer insight into the field of wind energy forecasting
could be used in the preventive maintenance of wind turbines, electricity market
clearing, and reload sharing. For futer works it is intended to integrate the use
of optimization techniques such as Cheetah Based Optimization Algorithm [18]
to improve the hyperparameter tuning of the proposed model.

References

[1] BP. Statistical review of world energy, 2022. (accessed 19 January 2022).

349

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



[2] Brazilian Wind Energy Association (ABEEólica). Impactos Socieconômicos e ambien-
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