
Dynamics-aware Representation Learning via
Multivariate Time Series Transformers
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Abstract. We propose a novel multivariate time series autoencoder, which pro-
duces interpretable linear-dynamical latent features that govern the predictions for
several downstream tasks. To this end, we combine a transformer autoencoder
with a dynamical atoms-based autoencoder to mimic Koopman operators in the
latent space. We demonstrate that our approach significantly outperforms deep
Koopman operator learning baselines for time series forecasting on chaotic systems
such as the lorenz Attractor. Furthermore, the dynamics-aware representations, com-
bined with a transformer classifier, lead to state-of-the-art classification accuracy
on benchmark multivariate time series datasets. Our code is publicly available at
https://github.com/mlpotter/T-DYAN-T.

1 Introduction

Time series data prevalently emerge in many domains, including, e.g., healthcare, finance
and autonomous driving. Unlike the domination of deep learning in computer vision and
natural language processing, linear models such as HIVE-COTE [1], TS-CHIEF [2] and
ROCKET [3] have been favorable to deep learning for time series analysis. Virtually
only transformer models have significantly outperformed shallow models in supervised
learning over multivariate time series (MVTS) benchmarks [4]. Particularly, pre-training
overparametrized deep models such as transformers via autoencoder-based unsupervised
representation learning has led to the breakthrough in downstream supervised tasks.

Despite the recent success of deep learning in several applications, the unique nature
of real-life MVTS data that capture the dynamic evolution of synchronous variables
has not yet been systematically imposed into deep models. To this end, there has been
promising advances towards dynamics-aware representation learning from time-series.
Particularly, recent deep autoencoder approaches [5, 6] aim to estimate data-driven
representations of Koopman eigenfunctions in the latent space, which provide intrinsic
coordinates that globally linearize dynamics. Nevertheless, these works have been
limited to reconstruction and forecasting on well-established physical models, including,
e.g., linear and nonlinear oscillators and the chaotic lorenz attractor.

The overall dominance of linear models in downstream tasks, along with the promis-
ing advances in dynamics-aware deep representation learning on physical models, moti-
vate an interpretable and generalizable deep representation learning method to reinforce
the presence of deep learning in MVTS analysis. We make the following contributions:
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• To the best of our knowledge, our main contribution is to propose the first
dynamics-aware representation learning framework via MVTS transformers that
consolidate predictions in both reconstruction and forecasting, as well as down-
stream supervised tasks such as classification.

• We employ a transformer autoencoder [7], where latent features are augmented
with linear dynamics through a dynamical atoms-based autoencoder. Compared
to Koopman operators, our formulation relaxes latent space assumptions, such as
invariant eigenfunction spaces and full-state observability of features.

• Our method significantly improves forecasting over two unsupervised autoencoder
baselines that approximate finite Koopman operators. Furthermore, training a
transformer classifier on the features learned by the transformer autoencoder, we
outperform several MVTS classification baselines.

2 Problem Formulation

We consider a dataset of N MVTS samples, each comprising M features and T + n
points. Formally, we denote each MVTS by X(i) ∈ RT+n×M , for i ∈ {1, . . . , N}. Our
aim is to learn dynamics-aware latent representations from MVTS data. To this end, we
employ a transformer autoencoder [7], where latent feature learning is augmented with
linear dynamics through a Dynamical Atoms-Based Network.

Figure 1: Our proposed transformer autoencoder

Transformer Autoencoder. Our transformer autoencoder architecture contains a trans-
former encoder followed by a transformer decoder [7]. The encoder network Φ(·;WΦ)

receives an MVTS sample X(i)
1:T and extracts latent features Y (i)

1:T ∈ RT×P . The decoder
network Θ(·;WΘ) receives the extracted latent features Ŷ (i)

1:T+n ∈ RT+n×M and esti-

mates X̂(i)
1:T+n ∈ RT+n×M . The first T rows comprise the reconstruction from the T

time points in the input sample X(i), while the next n rows comprise the forecasted time
points. To impose linear dynamics in the latent space of our transformer autoencoder,
we employ the Dynamical Atoms-Based Network (DYAN) [8].
DYAN. DYAN [8] is an unsupervised autoencoder network that captures temporal
dynamics via Linear Time Invariant (LTI) systems. Formally, DYAN learns a structured
dictionary D1:T ∈ RT×L+1 to encode latent sequences Y1:T as a weighted summation
of L low-order LTI systems. These systems are governed by poles pi = ρie

jϕi , i ∈
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{1, . . . , L}, with magnitude ρi and phase ϕi. To combat the complex poles, DYAN
employs a dictionary with real and imaginary parts of the poles in the first quadrant, of
their conjugates and of their symmetries in other quadrants. As a result, each column
(atom) of the dictionary D1:T is the impulse response of a low order LTI system, where
the first column corresponds to constant signals:

D1:T =


1 1 0 · · · 0
1 ρ1cos(ϕ1) ρ1sin(ϕ1) · · · −ρLsin(ϕL)
1 ρ21cos(2ϕ1) ρ21sin(2ϕ1) · · · −ρ2Lsin(2ϕL)
...

...
...

...
...

1 ρT1 cos(Tϕ1) ρT1 sin(Tϕ1) · · · −ρTLsin(TϕL)

 . (1)

DYAN learns the low-order LTI systems by:

C∗ = min
C

N∑
i=1

∥∥∥Φ(X(i)
1:T ;WΦ)−D

(i)
1:TC

∥∥∥2
2
+ λ1 ∥C∥1 . (2)

The coefficient matrix C ∈ RL+1×P reconstructs the latent features and is designed
to be a sparse matrix due to the ℓ1 penalty; this design allows C to select as few low
order LTI systems as possible. More importantly, due to its proximal form, (2) can
be solved by the efficient fast iterative shrinkage-thresholding (FISTA) algorithm. To
extend latent features to future time points, we add rows to D1:T (1) for T + 1 : T + n.
Having extended to D1:T+n ∈ RT+n×L+1 as above, we estimate the reconstructed and
forecasted latent features using the same optimal C∗: Ŷ1:T+n = D1:T+nC

∗.
Dynamics-aware Representation Learning via Transformer Autoencoder. Putting
everything together, we denote our unsupervised dynamics-aware MVTS representation
learning architecture, depicted in Figure 1. Our approach involves a transformer autoen-
coder, in which DYAN receives Y

(i)
1:T and produces the reconstructed and forecasted

latent features Ŷ (i)
1:T+n by enforcing linear dynamics in the latent space.

The end-to-end loss function (3) to train the transformer autoencoder has three ℓ2
norm objectives: enforced linear dynamics via (2), reconstruction and forecasting:

min
WΦ,WΘ,Wp

N∑
i=1

∥∥∥X(i)
1:T − X̂

(i)
1:T

∥∥∥2
2
+ λ2

∥∥∥X(i)
T+1:T+n − X̂

(i)
T+1:T+n

∥∥∥2
2
, (3)

where Wp contain magnitudes and phases of DYAN poles, and the reconstructed and
forecasted time points are estimated by the decoder as X̂1:T+n = Θ(D1:T+nC

∗;WΘ).
Extension to Downstream Classification. To illustrate the benefit of dynamics-aware
latent representations in downstream tasks, we employ the learned latent features Ŷ (i)

1:T+n

as inputs for downstream classification. To do so, we combine a transformer encoder
with a fully-connected classification layer. For each MVTS sample i, the transformer
classifier receives latent features Ŷ (i)

1:T+n and predicts the corresponding classification
label. We employ the same transformer encoder architecture as 2, except for positional
encoding. Note that the applicability of the dynamics-aware latent features is not limited
to this illustrative task and can be extended to, e.g., regression.
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(a)

(b)
(c)

Figure 2: (a) Reconstruction and forecasting on a lorenz test sample, (b-c) Reconstruction and
forecasting, and latent features of a Carleman test sample

Model Transformer + DYAN Fully-connected + DYAN Lusch et al. (2018) Geneva et al. (2022)
MSE 0.273 0.348 0.3850 1.124

Table 1: Mean-squared forecasting error (MSE) over all test samples from the lorenz Attractor

3 Experiments

3.1 Datasets

lorenz Attractor. We consider the lorenz Chaotic system:

ẋ1 = σ(x2 − x1); ẋ2 = x1(ρ− x3); ẋ3 = x1x2 − βx3; (4)

with parameters σ = 28, ρ = 10, and β = 8
3 . Using MATLAB ODE45, we generate

15000 and 1000 trajectories of 400 points for training and testing, respectively. We use
T = 328 points for reconstruction and the remaining n = 72 points for forecasting.
Carleman Nonlinear Model. We consider the simple nonlinear differential equation:

ẋ1 = µx1; ẋ2 = λ(x2 − x2
1); (5)

with parameters µ = −0.2 and λ = −0.8. Using MATLAB ODE45, we generate 15000
and 1000 trajectories of 550 points for training and testing, respectively. We use T = 32
points for reconstruction and the remaining n = 534 points for forecasting.
Downstream Classification. We employ 4 benchmark MVTS classification datasets
from the UEA Time Series Classification Archive [9]. For data partitioning, we use the
training and test splits provided by the archive.

3.2 Competing Methods

Unsupervised Dynamics-Aware Representation Learning. We compare the forecast-
ing performance of our representation learning approach over the test samples generated
from lorenz Attractor with two unsupervised fully-connected autoencoder models that
approximate finite Koopman operators for linear dynamics in the latent space: an au-
toencoder with a dynamically learnable Koopman operator representing continuous
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Ours TST Rocket XGBoost LSTM CNN DTWD

Dataset Max Mean p-value Max Mean
FaceDetection 0.693 0.689±0.004 0.02 0.688 0.683±0.004 0.647 0.633 0.577 0.528 0.529
ArabicDigits 0.995 0.993±0.001 0.02 0.992 0.992±0.000 0.712 0.696 0.319 0.956 0.963

PEMS-SF 0.861 0.851±0.011 0.05 0.884 0.825±0.031 0.751 0.983 0.399 0.688 0.711
Heartbeat 0.785 0.778±0.013 0.14 0.781 0.770±0.009 0.756 0.732 0.722 0.756 0.717

Mean Accuracy 0.828 0.818 0.717 0.761 0.504 0.732 0.730
Mean Ranking 1.25 2.25 3.875 4 6.25 5.125 5.25

Table 2: Average classification accuracy and ranking of each method. For transformers, we report
maximum and standard deviation over 5 repetitions, and p-value of the improvement by ours.

eigenvalue spectra [5] and an autoencoder enforcing the Koopman operator to be a band
matrix [6]. Moreover, we implement a baseline for our approach with a fully-connected
autoencoder comprising 2 encoder and 2 decoder layers, instead of a transformer. We
report mean-squared errors for all competing methods.
Downstream Classification. Following the recent advances in MVTS classification [4],
we compare the downstream classification accuracy of our approach over the test sam-
ples with several recent baseline methods: a dilation convolutional neural network
(CNN) [10], one nearest neighbour classifier with dimension dependent dynamic time
warping similarity (DTWD), ROCKET, XGBoost [11], a stacked long-short term mem-
ory (LSTM) network, and an MVTS transformer (TST) [4]. For transformer models,
we report average, maximum and standard deviation of the accuracy over 5 training
repetitions, as well as the p-value of the performance improvement by our approach
under the one-sided t-test. We implement the TST classifier baseline following the best
hyperparameters reported in the recent literature for each dataset [4].

3.3 Performance on Reconstruction and Forecasting

Table 1 shows the forecasting errors of deep Koopman learning autoencoder models
against our dynamics-aware representation learning approach. Despite the underlying
chaotic dynamics of lorenz and the extensive forecasting window of Carleman, our
method attains a reconstruction error of 0.217 (0.0004) and a forecasting error of 0.273
(0.0005) over the test samples from lorenz (Carleman). Crucially, we significantly
outperform all unsupervised representation learning baselines, while both transformer
and fully-connected versions of our approach via linear latent dynamics enforced by
DYAN outperform the deep Koopman learning competitors, illustrating the benefit of
dynamical modeling via DYAN and relaxing the latent space assumptions.

Examples of reconstructed and forecasted time points on a test sample from the
lorenz (Carleman) model are shown in Figure 2a (2b). Our method can not only learn
underlying dynamics via reconstruction, but also generalize as well over forecasted
points, which is fully governed by extending the DYAN model in the latent space. We
further visualize the latent space trajectories on the same Carleman test sample in Figure
2c. The ground-truth closed linear system expansion of Carleman equations appear
as exponentially decaying sinusoidal functions, while the estimated long-term linear
dynamics are also exponentially decreasing sinusoidals after the sharp overshoot. This
observation further illustrates that the learned latent features can successfully capture
the ground-truth dynamics that govern reconstruction and forecasting.

355

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



3.4 Performance on Downstream Classification

Table 2 show the downstream classification accuracy of our transformer classifier trained
on transformer autoencoder latent features vs. MVTS classification baselines evaluated
over 4 benchmark datasets. Our approach attains the highest average accuracy and
performance ranking among all baselines, while outperforming the TST baseline with
a statistically significant margin over 3 datasets. Overall, our approach not only leads
to striking forecasting over chaotic physical systems, but also produces dynamics-
aware representations that do not sacrifice from and even improve against downstream
classification compared to several state-of-the-art methods.

4 Conclusion

We developed a novel unsupervised dynamics-aware representation learning framework
that is competitive with benchmark MVTS methods using autoencoders, time series
forecasting, and feature extraction for time series classification. Future work can involve
discovering the latent dimension size adaptively by uncovering the nullspace trajectories
of DYAN reconstructions. Moreover, dynamics-aware latent features can be combined
with explainable machine learning to underline interpretable representation learning.
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