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Abstract. In this paper, we propose a novelmethod for time-seriesmodeling
and forecasting. It is based on the temporal formulation of Restricted Kernel
Machines leading to a dynamical equation in the latent-variables. Forecasting
involves finding the next latent variable and then solving a pre-image problem
to predict a new-point in the input space. Further, we benchmark our model
on several standard data sets against other well-known time-series models.

1 Introduction

In [1], Suykens proposed a new framework called Restricted Kernel Machines
(RKM), which provides a representation of kernel methods with visible and latent
variables. This representation has an objective function that is similar to the energy
function of Restricted Boltzmann Machines (RBM), thus linking kernel methods
with RBMs. Training and prediction requires characterizing the stationary points
for the unknowns in the objective. This in turn provides the training and prediction
schemes in the kernel methods setting. Restricted Kernel Machines have been previ-
ously extended for different tasks such as classification [1], generation [2, 3] and out-
lier detection [4]. We further extend the RKM framework to time series modeling by
introducing a temporal correlation on the latent variables which provides powerful
representation learning capabilities, and a novel forecasting method. The formu-
lation draws connections with kernel autoregressive models [5] and Temporal Re-
strictedBoltzmannMachines (TRBM) [6, 7], which are explored in the next sections.
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2 Recurrent Restricted Kernel Machines

2.1 Training

Our main objective is to capture the dynamics of a training data set XT containing
T time steps {xt}Tt=1 ⊂ X . We define a feature map1 ϕ : X → H with H a
(possibly infinite dimensional) Reproducing Kernel Hilbert Space (RKHS; see [8]
for more details). Such a feature map could be constructed explicitly or implicitly
via a kernel function k(x,y) :X 2→R : (x,y) 7→ ⟨ϕ(x),ϕ(y)⟩H . We also define a
linear operator2 V :Rs→H with s≤T and it’s adjoint V ⋆. Each datapoint xt will
be associated to a latent variable ht∈Rs through a pairing term ⟨ϕ(xt),V ht⟩H .
To also capture time dependence, we only add one extra term compared to the
original RKM framework [1]: time correlation in the latent space using a set of
non-zero lag-dependent coefficientsAT ={at,l|1≤ t≤T and0≤ l<p} with p∈Z+ a
lag parameter (other coefficients are assumed to be 0). Then consider the following
objective function with diagonal matrix Λ:

JT (V ,HT ,XT )=
T∑

t=1

[
−

feature-space pairing︷ ︸︸ ︷
⟨ϕ(xt),V ht⟩H −

temporal covariance︷ ︸︸ ︷
p∑

l=0

at,lh
⊤
t−lht

+
1

2

(
h⊤
t Λht+∥ϕ(xt)∥2H

)]
+
1

2
Tr(V ∗V )︸ ︷︷ ︸

regularization

. (1)

Interpreting the objective function. The first two terms in (1) are similar to
the TRBM’s energy function [6] which is used (along with bias terms) to define
a joint-probability distribution over some visible variables {x∈X } and latent
units {h∈{0,1}s}. It is trained with a maximum-likelihood approach where the
gradients are approximated with contrastive divergence. In contrast, we propose to
map the data into feature-space and center it to eliminate the need of a bias term.
The first term in the objective maximizes the pairing between the visible variables
in the feature-space {ϕ(x) :x∈X } and latent variables {h∈Rs}. The second term
maximizes the temporal covariance between current and past latent vectors. The
regularization terms and constraints are meant to bound the objective.

Solving the objective. Given the visible variables, characterizing the stationary
points of JT (V ,HT |XT ) in the latent variables and the pairing linear operator

1Throughout our discussion, we assume that the feature vectors are centered in the feature-
space i.e. ϕ̄(x) = ϕ(x)−µϕ with µϕ = Eξ∼X [ϕ(ξ)]. Using an implicit formulation, it suffices
to notice that ⟨ϕ̄(x), ϕ̄(y)⟩H = ⟨ϕ(x)− µϕ,ϕ(y)− µϕ⟩H = ⟨ϕ(x),ϕ(y)⟩H − ⟨µϕ,ϕ(y)⟩H −
⟨ϕ(x),µϕ)⟩H + ⟨µϕ,µϕ⟩H = k(x,y)− Eξ∼X [k(ξ,y)]− Eζ∼X [k(x,ζ)] + Eξ,ζ∼X [k(ξ,ζ)]. In
practice, we can compute statistics on XT .

2The linear operator V is often referred to as a matrix as it only exists explicitly in the case of
finite dimensional Hilbert spaces H . It then takes the form V ∈Rdim(H )×s and V ∗=V ⊤.
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Fig. 1: Dependency graph of the Recurrent RKM model’s training (3) and predic-
tion (8) scheme for at,l=1 if l=1 and at,l=0 otherwise, and a linear kernel on X .

leads to the following equations for 1≤ t≤T , where ⊗ is the outer product:
∂JT
∂V

=−
T∑

t=1

ϕ(xt)⊗ht+V =0 =⇒ V =
T∑

t=1

ϕ(xt)⊗ht,

∂JT
∂ht

=−V ∗ϕ(xt)+Λht−

[
p∑

l=0

at,lht−l+

p∑
l=1

at+l,lht+l

]
=0.

(2)

(3)

Eliminating V from (3) using (2) gives the following solution

[K(XT )+A]H⊤=H⊤Λ, (4)

where H = [h1,...,hT ] ∈Rs×T , Ai,j = ai,i−j for i≥ j and Ai,j = aj−i,j for i < j,

and kernel matrixK(XT )=[k(xt,xt′)]
T
t,t′=1. We can see that any s eigenpairs of

K(XT )+A satisfies (4). The symmetry of A and of the kernel guarantees these
eigenvalues to be real. IfA is also positive semi-definite, then these eigenvalues are
also guaranteed to be positive. An example of such a choice is at,l=exp

(
−l2/2σ2

t

)
for any bandwidth σt ∈ R+. Alternatively, at,l can be a compactly supported
function, for instance, an indicator at,l = 1{1,...,p}(l) (Fig. 1 is an example with
p=1). Both these choices are however translational invariant, i.e. at,l=al for any
at,l∈AT . In other words, the local effect of time is the same at all time steps.

2.2 Prediction

The main idea is to generate {xT+1,...,xT+n} for some n>0. To do so, we now
work inXT+n=XT ∪{xT+1,...,xT+n},HT+n=HT ∪{hT+1,...,hT+n} and consider
AT+n. This gives the following objective

JT+n(V ,HT+n,XT+n)=
T+n∑
t=1

[
−⟨ϕ(xt),V ht⟩H −

p∑
l=0

at,lh
⊤
t−lht (5)

+
1

2

(
h⊤
t Λht+∥ϕ(xt)∥2H

)]
+
1

2
Tr(V ∗V ).
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Given the learned V from the training, characterizing the stationary points of
JT+n(XT+n,HT+n|V ) in terms of visible and latent variables gives for 1≤ t≤T+n

∂JT+n

∂ϕ(xt)
=−V ht+ϕ(xt)=0 =⇒ ϕ(xt)=V ht,

∂JT+n

∂ht
=−V ∗ϕ(xt)+Λht−

[
p∑

k=0

at,lht−l+

p∑
l=1

at+l,lht+l

]
=0.

(6)

(7)

We first notice that ϕ(xt)=V ht is true for all 1≤ t≤ T . Furthermore, we also
have ∂JT+n/∂ht=∂JT /∂ht for all 1≤ t≤T−p. Using ∂JT+n/∂ht=0 (7) and the
obtained V (2), with t=T−p+1, we can find an expression for hT+1. Iteratively,
we can find an expression for hT+m with t=T−p+m, until m=n:

aT+m,thT+m=
[
HAH⊤−aT+m−p,0Is

]
hT+m−p (8)

−
[ p∑
l=1

aT+m−p,lhT+m−p−l+

p−1∑
l=1

aT+m−p+l,lhT+m−p+l].

This can now be used in (6) to find ϕ(xT+m), again with t=T+m:

ϕ(xT+m)=V hT+m=
T∑

t′=1

ϕ(xt′)h
⊤
t′hT+m. (9)

Finally, to obtain new data points {xt}T+n
t=T+1 in the input space, the pre-image

problem on (9) needs to be solved.
Solving the pre-image problem. An advantage of using a kernel function,

k(x,y)= ⟨ϕ(x),ϕ(y)⟩H , is that all computations can be implicitly performed in
feature space and the exact mapping ϕ :X →H is not required. Working with an
implicit feature map however gives rise to the pre-image problem. Given a point
ψ∈H , find x∈X such that ψ=ϕ(x). This pre-image problem is known to be
ill-posed as the exact pre-image might not exist [9]. Instead, an optimization prob-
lem is considered to find the approximate pre-image x̃=argminx̃∈X ∥ψ−ϕ(x̃)∥2H .
We employ two different pre-image methods in this work to solve (9): kernel
smoother [10] and kernel ridge regression [11].

Computational complexity. The eigendecomposition during training (see (4)) re-
quiresO(T 3) operations, the complexity of the predictions in latent spaceO(p) and
in input space with the kernel-smoother O(T ), whereas training the kernel-ridge
regression O(T 3) since it involves solving a linear-system.

3 Experiments

We illustrate the representation learning capabilities by considering a simple sine
wave as input to the RRKM model and exploring its latent space. Fig. 2 shows
the latent space embedding of the learned sine wave and evolution of forecasted
latent variables. Dynamics in the data are well represented in the latent space
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and the forecasted latent variables continue to follow the training trajectory. In
Fig. 3, we perform an ablation study on the Santa Fe data set to identify the effect
of hyper-parameters on the forecasting performance. We vary bandwidths σx,σt

and latent-space dimension s. The study shows that σt captures phase-shift, σx

captures amplitude and s capture higher and lower frequencies.

Fig. 2: Training and predicted latent vari-
ables of a sinusoidal data set.

The proposed model is compared
to a recurrent neural network (RNN)
and an ARMA model which are two of
the most popular methods used in time
series forecasting. On each data set 3,
and method, hyperparameter tuning
has been performed and the result of
the best set of parameters, quantified
as the mean squared error, is shown in
Table 1. For all methods, the entire
validation set is forecasted, in recursive
fashion, starting from the end of the
training set.

When comparing to the baseline
methods, RRKM is comparable or bet-
ter. The RNN can have a better result, however, due to its stochastic nature, its
performance has high variability while the RRKM is deterministic for the same
parameters.

Table 1: Mean squared error on the forecasted data. Standard deviation for 10
iterations between brackets for the stochastic models.

Data RNN ARMA RRKM (Ours)

Santa Fe 3075.06 (±794.10) 2224.55 119.06
Chickenpox 34329.95 (±9513.07) 23571.35 20716.91
Energy 16002.11 (±1809.89) 24797.40 12764.097
Turbine 2401.12 (±644.53) 1317.67 1299.915

4 Conclusion

In this work, we introduced the recurrent restricted kernel machine model. This
framework provides new insights and ideas for time series modeling including latent
space dynamics and a novel forecasting method. For future work, we believe a
further exploration of the representation learning capabilities in latent space can
provide new ways to interpret the data. Additionally, besides the topics mentioned
in this work, the framework can be extended towards other tasks involving time
series such as denoising, handling missing values and classification.

3https://rdrr.io/cran/TSPred/man/SantaFe.A.html,
https://archive.ics.uci.edu/ml/datasets/Hungarian+Chickenpox+Cases,
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction,
https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set.
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Fig. 3: Ablation study on the Santa Fe laser data set.
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