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Abstract. This century saw an unprecedented increase of public and
private investments in Artificial Intelligence (AI) and especially in Ma-
chine Learning (ML). This led to breakthroughs in their practical ability
to solve complex real world problems impacting research and society at
large. Instead, our ability to understand the fundamental mechanism be-
hind these breakthroughs has slowed down because of their increased com-
plexity. This questioned researchers about the necessity for a new theo-
retical framework able to help researchers catch up on this lag. One of the
still not well understood mechanisms is the so called over-parametrization,
namely the ability of certain models to increasing their generalization per-
formance (reduce test error) when the number of parameters is above the
interpolating threshold (zero training error), and the associated double-
descent curve. In this paper we will show that this phenomena can be
better understood using both known theories, i.e., the algorithmic stabil-
ity theory, and empirical evidence.

1 Introduction

This century, thanks to an unprecedented increase of public and private in-
vestments1, saw Artificial Intelligence (AI), and in particular Machine Learning
(ML), deeply impacting the development of science [1, 2] and the society at
large [3, 4]. Every branch of science is now empowering human-driven research
with AI and, from self-driving cars to smart IoT devices, almost every con-
sumer application now leverages AI-based technologies to make sense of the vast
amount of available data collected and stored.

The availability of huge amounts of computing power and data coupled with
the work of many researchers and practitioners allowed also to deeply transform
AI and ML themselves. In the previous century, the most effective and efficient
AI and ML were born from foundational research. In this century, empirical
evidence has quickly surpassed our ability to fully understand the fundamental
mechanism behind practical and effective algorithms. As a result researchers
start questioning themselves and the community about the necessity for new
theoretical frameworks able to help researchers catch up on this lag [5–7].

One of the still not well understood, even if studied from a long time [8] mech-
anism is the so-called over-parametrization and the associated double-descent
curve [6, 9]. In fact, classical (shallow) ML mostly relies on the Empirical Risk
Minimization (ERM) principle [10]. ERM suggests finding the function that
fits (e.g., minimizes the empirical error) on a training set searching in a set of
possibly unknown set of functions carefully tuned during the model selection
phase [11]. The tuning procedure trades-off error on the training data and com-
plexity of the solution. When the complexity is measured with the capacity
of the set of functions this results in the Structural Risk Minimization (SRM)
principle, also called bias–variance or under/over-fitting trade-off [6, 10, 12].

1https://ai-watch.ec.europa.eu/publications/ai-watch-index-2021_en
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SRM tells you that you do not have to increase the capacity of you set of func-
tion once the error on the training set reached zero, the interpolation thresh-
old, and there is an optimal point below this threshold for which the model
will exhibit the optimal generalization capabilities with the so called U-Shaped
generalization error curve [10, 12]. Modern (deep) ML models, instead, tends
to push themselves after the interpolation threshold, in the so called over-
parameterized regime, since empirical evidence show that after this threshold
sometimes the generalization error tends to descend again, showing the so-called
Double-Descent generalization curve [6, 9]. See Figure 1 to better catch these
concepts.

Fig. 1: Under- and Over-
Parametrization and the corresponding
U-Shaped and Double-Descent Curves.

In this paper, we argue that it is
possible to better understand and ex-
plain the over-parameterized regime
measuring the complexity of the al-
gorithms with different measures [11,
13] (Section 2). In particular, us-
ing the the Algorithmic Stability [14,
15] (Section 3) and empirical evi-
dence (Section 4) we will show that
known theories are powerful enough
to give insight and better explain
the intriguing properties of the over-
parameterized regime and the double-
descent curve. Section 5 will conclude
the paper.

2 Preliminaries

In this work we focus on supervised
learning [10–12]. Based on a random observation of X ∈ X one has to estimate

Y ∈ Y by choosing a suitable function f : X → Ŷ (characterized by a number of
parameters) in a set of possible ones F . A learning algorithm AH, characterized
by its set of hyperparameters H, selects f from a possibly unknown F (induced
by AH) by exploiting a set of n labeled samples D : {(X1, Y1) , · · · , (Xn, Yn)}.
D consists of a sequence of independent samples distributed according to µ over
X × Y. The generalization (test) error L(f) = E(X,Y )ℓ(f(X), Y ) associated to

function f ∈ F , is defined through a loss function ℓ : Ŷ × Y → [0, 1]. As
µ is unknown, L(f) cannot be explicitly computed, but we can compute the
empirical error (i.e., the empirical risk) namely the empirical (training) estimator

of the generalization error L̂(f) = 1/n
∑

(X,Y )∈D ℓ (f (X) , Y ). The purpose of

any learning procedure is to find the minimizer f∗ of the generalization error
L(f) (f∗ = argminf∈F L(f)) but since L(f) is unknown we have to estimate h∗

exploiting an empirical estimator defined by the algorithm based on the dataset

f̂ = AH(D) (e.g., the empirical risk minimizer f̂ = argminf∈F L̂(f)) and then

estimate the generalization ability of ĥ and then the quality of AH. In this
setting it is possible to prove that [13, 14]

P{L(f̂) ≤ L̂(f̂) + C(AH) + ϕ(n, δ)} ≥ 1− δ, (1)
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namely, the generalization error of f̂ is bounded by the empirical (training) error
plus a complexity term, plus a complexity term C(AH) which measures the risk
due to the choice of the algorithms and its hyperparameters (i.e., the more the
algorithm tends to memorize/fit/extract-information and not learn from the data
the larger is this term), plus a confidence term2 ϕ(n, δ) which measures the risk
associated to the sample (i.e., the less data we have or the larger confidence we
require the larger is this term).

Different approaches from statistical learning theories allow us to obtain these
bounds [11, 13]. If F can be explicitly defined (or estimated [16]) based on AH
we can use the complexity based theories (e.g., the Vapnik–Chervonenkis or the
Rademacher Complexity bounds), if the algorithms tends to deeply compress
the original dataset the Compression theories are a good choice (e.g., the Com-
pression or the Minimum Description Length based bounds), when the F cannot
be explicitly defined the Algorithmic Stability Theory (e.g., Uniform or Hypoth-
esis Stability) is a good option, when we have to deal with randomized model
PAC-Bayes theory is a very strong approach, when we have to deal with ran-
domized algorithms Differential Privacy theory is a promising research direction,
and when the analysis is adaptive (i.e., when the algorithm choice depend on
the data itself) information theory based bounds are surely the best option.

3 Theoretical Evidences

The classical approach to study the over-parameterized regime and discuss its
ineffectiveness in understanding the double-descent curve is to use the complex-
ity based theories in Bound (1) [6, 9]. In fact, using, e.g., the Rademacher
Complexity, what happens is that C(AH) = R(F) with

R(F) = EDEσ1,··· ,σn
supf∈F

2
n

∑n
i=1 σiℓ(f(Xi), Yi), (2)

where P{σi = +1} = P{σi = −1} = 1/2 ∀i ∈ {1, · · · , n}, namely the measure
of the risk due to the choice of the algorithms and its hyperparameters becomes
the capacity of the set of function from which the algorithms chooses the esti-
mator F̂ . Note that R(F) can be estimated from the data [11]. Increasing the
parameters of the model by changing H (i.e., increasing the number of neurons
or layers in a deep model) will improve our ability to shrink the empirical er-

ror L̂(f̂) and is equivalent to enlarging the corresponding F and consequently
R(F). This means that there will be an optimal value of F between F = ⊘ (the
empty set of functions) and the interpolation threshold, i.e., F large enough

to ensure L̂(f̂) = 0. Above this this threshold, complexity based theories tells

you that it is useless to proceed since L̂(f̂) cannot decrees further and R(F)
can only increase. This explanation does not capture the intrinsic mechanism
behind the over-parameterized regime and the corresponding Double-Descent
curve but it explains just the U-Shaped curve below the interpolation threshold
(see Figure 1).

In this work we argue that, in order to understand and better explain the
Double-Descent curve, the complexity based theories are not adequate but other
theories can give insights and better explain the phenomena. Between the differ-
ent available theories mentioned in Section 2, Algorithmic Stability (in particular

2We will not discuss this term since independent from AH.
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the Hypothesis Stability) is surely the best option since it is the most general
theory (works with deterministic/randomized models/algorithms) and allows to
derive tight fully empirical bounds [11, 14, 15]. Contrarily to complexity based

theories, Algorithmic Stability does not care about F from which AH selects f̂
but it measures how much the model changes by slightly changing D. The idea

is simple: if f̂ does not change changing D this means that the algorithm is
learning from the data and does not simply fit/memorize them. Consequently,
in this case C(AH) = H(AH) with

H(AH) = ED,(X′,Y ′)

∣∣ℓ(AH(D)(Xi), Yi)− ℓ(AH(Di)(Xi), Yi)
∣∣ , (3)

where Di = D ∪ (X ′, Y ′) \ (Xi, Yi) and (X ′, Y ′) are sampled according to µ.
Note that H(AH) can be estimated from the data [14]. In this setting, it is not
automatic, as for the complexity based theories, that increasing the parameters
of the model by changing H (or equivalently to enlarging the corresponding
F) will increase H(AH) but still for sure will improve our ability to shrink the

empirical error L̂(f̂). If a model, as empirical evidence show [6, 9], improve
its generalization performance when increasing the number of parameters above
the interpolation threshold it means that it actually learns more from data and
do no simple fit/memorize the training set. And if this is true, it means that
it will not simply memorize the data above that threshold but will actually
select more smooth (stable) functions, and then H(AH) will decrease above the
interpolation threshold. We will further support this intuition in the next section
with empirical evidence.

4 Empirical Evidences

Let us consider a quite general framework for shallow models3 where the func-
tional form of the model is f(X) =

∑p
i=1 αiσi(X) where αi ∈ R and σi(X) : X →

R ∀i ∈ {1, · · · , p}. As an algorithm we will rely on regularized least squares4

α̂ : argminα∈Rd

∑n
i=1 [Yi −

∑p
i=1 αiσi(X)]

2
+ λα′Mα, (4)

where M ∈ Rp×p allows to models many type or regularization such as Lp-norm,
early stopping, and dropout [10, 17] and λ ∈ [0,∞) is an hyperparameter.

Let us now consider two examples (similarly to what has been done in [6]).
For the first example5 we consider a toy regression problem where X = [0, 1]

and Y is induced by our oracle is Y = ||X−0.4|−0.2|+X/2−0.1. From this oracle,
we sample n = 8 points randomly from X to constructD. In this case we consider
f(X) =

∑p
i=0 αiX

i and Mi,j = 0 if i, j ≤ 2, and Mi,j = i(i − 1)j(j − 1)/(i + j − 3)

for i, j > 2 since we use as regularizer
∫ 1

0
[f ′′(X)]2dX = α′Mα, and λ = 10−6.

Then, in Figure 2, we reported6: the oracle, the sample, f̂ (α̂) for the optimal
point in the under- and over-parameterized regimes, and, varying p, the train -

3This framework can be easily extended to deep model but for space constraints we re-
stricted our analysis to the shallow models.

4Other loss functions could be used but this is out of the scope of the paper.
5https://twitter.com/francoisfleuret/status/1269301689095503872
6Note that, as for [6], we reported the results for a single round since results are quite

consistent over repetitions and changes in the parameters
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Fig. 2: Results for the toy regression problem.
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Fig. 3: Results for the example of [6].

L̂(f̂) - and generalization - L(f̂) - errors, the R(F) [18] with the corresponding

Bound (1) (L̂(f̂)+R(F)), and the H(AH) [14] with the corresponding Bound (1)

(L̂(f̂) + H(AH)).
From Figure 2 it is possible to confirm the discussion of Section 3. In the

second graph one can observe the U-Shaped and Double-Descent curves of the
generalization error and the decrease to zero of the train error until the interpola-
tion threshold. In the third graph one can see how the Rademacher Complexity
of the class just increases with the increase in the number of parameters while in
the fourth graph the Algorithmic Stability is able to detect a change in the be-
havior of the model which starts to learn again after the interpolation threshold.
Using the Rademacher Complexity and the Algorithmic Stability based bound
one selects p = 2 (the minima in the U-Shaped curve) while p = 16 (the second
minima after the interpolation threshold) as optimal p respectively (. This result
confirms the ability of the Algorithmic Stability of capturing the ability of the
over-parameterized model to actually learn and not fit the data and well explain
the Double-Descent mechanism.

Let us now consider one of the examples of [6], where the MNIST dataset

is considered with X ∈ R282 and Y = {0, · · · , 9} sampling n = 10000 points
randomly. In this case Vi ∀i ∈ {1, · · · , p} are vectors sampled independently

from a uniform distribution over surface of unit hyper-sphere in R282 , f(X) =∑p
i=1 αi max(0, V ′

i X), Mi,j = 1 for i = j and Mi,j = 0 for i ̸= j, and λ =
10−5. The multiclass classification problem is mapped into a series of binary
classification problems using one-versus-all approach and Problem (4). After
the training phase the error on the train and on the test (as estimated of the
generalization error) using the percentage of misclassified samples. Figure 3
reports the equivalent of the 2nd, 3rd, and 4th graph of Figure 2 for this new
example.

Figure 3 confirms the results and the comments reported for Figure 2 further
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confirming the statements and the intuitions reported in this work.

5 Conclusions

In this paper we argued that still not well understood mechanisms underlying
modern Machine Learning models can be better explained with known theoret-
ical frameworks that can still give insights in the learning process of these new
models. In particular, we focused on studying the over-parameterized regime,
namely the ability of certain models to increase their generalization performance
when the number of parameters is above the interpolating threshold, and the
associated double-descent curve. In this context, we show that this mechanism
can be better understood using the Algorithmic Stability theory supporting our
statement with empirical evidence. This paper is surely just a first step toward
rethinking our approaches in studying model Machine Learning going back to
milestone theoretical results that can still help better understand modern com-
plex mechanisms but further theoretical analysis and empirical evidence are
needed.
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