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Abstract. In this contribution we present a physics-informed neural net-
work (PINN) approach for wind turbine fatigue estimation. This PINN in-
corporates physical information of the structure’s fatigue profile in its loss
function, referred to as Minkowski logarithmic error (MLE) - an extension
of the log loss for any given Lp space. The function is mathematically anal-
ysed and differentiated in order to better understand its behaviour. The
results obtained using the MLE are favourably compared with previous
efforts using the mean squared logarithmic error. Finally, the long-term
error is evaluated based on the effect of p.

1 Introduction

The recent demand for sustainable energy sources has seen wind energy rise
to the spotlight. In this context, cost-effective structural health monitoring is
required if these assets are to be properly maintained, their lifetime possibly
extended and the cost-of-energy lowered. This, paired with the rise of artificial
intelligence has seen a growing number of interfaces. In this contribution, we
propose a novel loss function (the Minkowski logarithmic error) to better capture
the physics inherent to the target variable, a wind turbine fatigue metric (dam-
age equivalent moment, DEM). Real-world data from an offshore wind turbine
(OWT) was collected by strain gauges (installed at the interface between the
turbine tower and the transition piece between the tower and the foundation,
TW-TP), accelerations and SCADA and processed into 10-minute time-series
metrics. This was further enhanced by the addition of wave and tidal data from
a public Flemish maritime database. The model estimated for three turbines:
OWT1 (training), OWT2 and OWT3. The general methodology is described in
[1]. As for a detailed account of DEM, cf. [2].
The target variable, DEM, is based on Eq. (1.1) as defined by [3], wherein m is
the slope of the S-N curve, or Wöhler exponent [4] (in this case m = 5, from the
OWT’s design documentation), ni is the number of cycles of a given stress range,
σi, ro, the TW/TP outer radius, ri, the TW/TP inner radius and Neq = 107, a
predefined number of cycles.

DEM =


∑

i ni ·
(

∆σi·π2 ·(r4o−r4i )

ri

)m
Neq


1/m

(1.1)
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This equation allows us to calculate DEMs on a 10-minute level (due to
Neq). In order to be able to compare DEMs accumulated at other timescales,
the individual 10-min instances of DEMs are aggregated into a long-term DEM,
given by Equation 1.2.

DEMLT =

(
1

n

n∑
i=1

DEMi

)1/m

(1.2)

2 Minkowski Logarithmic Error

In order to incorporate the physical information of Equation 1.2 into our machine
learning (ML) model in a so-called learning bias approach to physics-informed
ML (Φ-ML) we begin by studying the logarithmic loss function as a point of
departure prior to the introduction of the Minkowski Logarithmic Error (MLE).

2.1 Logarithmic loss function

The mean squared logarithmic error (MSLE) can be seen as a measure of the
ratio between the true and predicted values and employs the logarithmic function
to the mean squared error loss function (see Equation 2.1, where Y, Ŷ, with
Y = (y1, . . . , yn) and Ŷ = (ŷ1, . . . , ŷn) are the real and predicted values vectors).

L(Y, Ŷ) =
1

n

n∑
i=0

(log(yi + 1)− log(ŷi + 1))2 (2.1)

The introduction of the logarithm makes MSLE only care about the relative
difference between the true and the predicted value, or in other words, it only
cares about the percentual difference between them. This means that MSLE will
treat small differences between small true and predicted values approximately
the same as big differences between large true and predicted values. MSLE
also penalizes underestimates more than overestimates, introducing an asym-
metry in the error curve. This later property is for us highly desirable, as we
want to introduce a further ’safety-factor’ into our model by encouraging DEM
overprediction. As this is a key concern of ours, we can quickly demonstrate
why the logarithmic function can be used to penalize underpredictions through
Theorem 1 and its proof.

Theorem 1. The difference between the logarithm of a function, f, and the
logarithm of the same function with an increment ε, is less than the difference
between the logarithm of f and the logarithm of f with a decrement ε.

Proof. Let t ∈ R>0. The logarithmic measure between t and t plus an increment
ε can be given by the define integral [5]:

log(t)− log(t+ ε) =

∫ t+ε

t

1

u
du
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similarly, the measure between t and its decrement ε:

log(t)− log(t− ε) =

∫ t

t−ε

1

u
du =

∫ t+ε

t

1

w − ε
dw

with w = u+ε, due to the integration by substitution. Naturally, as w−ε < u,
the second integral will encompass a greater area than the first, and thus, the
mean squared logarithmic loss of an underpredicting model (t−ε) will be greater
than that of an overpredicting model.

2.2 Mathematical definition of MLE

As mentioned above, in order to include some physical information into our
machine learning model, a custom loss function was developed, primarily based
on Equation 1.2 and the logarithm properties. One can see that the structure
of Equation 1.2 is that of an Lp norm. Thus, the Minkowski Logarithmic loss
can be seen as a extension of the logarithmic loss function to any Lp metric,
also know as Minkowski distance (we could also define this function as a Lp-
log loss). Equation 2.2 describes this function mathematically, extended for
1 ≤ p < +∞ in the n-dimensional vector space Rn for Y, Ŷ. For our case the
Wöhler exponent (m = 5) coincides with p.

L(Y, Ŷ) =

(
n∑

i=0

| log(yi + 1)− log(ŷi + 1)|p
)1/p

(2.2)

Equation 2.2 can be described more elegantly as

L(Y, Ŷ)p =

n∑
i=0

∣∣∣∣log(yi + 1

ŷi + 1

)∣∣∣∣p (2.3)

We can furthermore describe Equation 2.2 through its Lebesgue integral in
the measurable space (S,Σ, µ) of the set S, σ-algebra Σ and measure µ (we can
do this because the logarithmic function is a measurable function f of the type
f : S → R>0). Thus

|| log(yi + 1)− log(ŷi + 1)||p =

(∫
S

| log(yi + 1)− log(ŷi + 1)|pdµ
)1/p

=

=

[∫
S

∣∣∣∣∫ y

ŷ

1

u+ 1
du

∣∣∣∣p dµ]1/p

is valid ∀ Y, Ŷ ∈ R>0 with Y = (y1, . . . , yn) and Ŷ = (ŷ1, . . . , ŷn) the
real and predicted values vectors, respectively. Note that the second equality
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appears from the integral definition of the logarithm. As such, the Minkowski
logarithmic loss function shares its properties with Lebesgue spaces and is a
seminormed vector space Lp(S, µ).

In order to better understand the behaviour of Equation 2.3 and how it
influences the neural network’s learning, we shall differentiate it by applying the
chain rule. Let the fraction within the logarithm of Equation 2.3 be Y/Ŷ = x.
Thus, ∀j ∈ N = {1, . . . , n} we have

∂

∂xj
|| logx||p =

∂

∂xj

(
n∑

i=1

| log xi|p
)1/p

=
1

p

(
n∑

i=1

| log xi|p
) 1

p−1

· ∂

∂xj

(
n∑

i=1

| log xi|p
)

=
1

p

(
n∑

i=1

| log xi|p
) 1−p

p

· p
n∑

i=1

| log xi|p−1 · ∂

∂xj
| log xi| (2.4)

The term ∂/∂xj | log xi| in Equation 2.4 is a piecewise function whose deriva-
tive is non-negative (the sign function of | log xi|) if i = j and 0 otherwise, known
as Kronecker delta, δij [6]. Thus, Equation 2.4 yields( n∑

i=1

| log xi|p
)1/p

1−p
n∑

i=1

| log xi|p−1 log xi

| log xi|
δij

One of the key properties of the Kronecker function is the reversal of the
integration variables, so that

∑n
i=1 aiδij = aj [6]. If we consider that ai =

| log xi|p−1log xi/| log xi|, the derivative reduces to

|| logx||1−p
p · | log xj |p−1 · log xj

| log xj |
We can finally simplify this term, and re-substitute x for the real and pre-

dicted value vectors.

∂

∂xj
|| logx||p =

log xj | log xj |p−2

|| logx||p−1
p

=
log
(

yj+1
ŷj+1

) ∣∣∣log (yj+1
ŷj+1

)∣∣∣p−2

∣∣∣∣∣∣log (Y+1
Ŷ+1

)∣∣∣∣∣∣p−1

p

(2.5)

As we can see, Equation 2.5 can be described as a fraction of a log function
with its Lp norm as denominator, positive for p ∈ R>1 and with its zero at 1.

Finally, we can see how this function behaves according to the residuals and
compare it with other loss functions (Figure 1a) and plot the derivative for
several values of p (Figure 1b).
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(a) (b)

Fig. 1: (a) Behaviour of MSE, MSLE, L5 distance and MLE (p = 5) functions
according to the residuals (|ytrue−ypred|). (b) Behaviour of the derivative of the
Minkowski logarithmic function, ∂/∂xj || logY/Ŷ||p, for the set p = {3, . . . , 6}.

What transpires from Figure 1b is that by increasing the value of p the same
occurs for the exponential behaviour of the derivative’s curve. Therefore, we can
say that the greater the p, the greater will be the loss, and most importantly,
the greater will be the penalization underpredictions will have, as seen in sub-
section 2.1. Thus, the merger of the Lp metric with the log loss introduces a
variable factor (p) which allows to control of the amount of penalization given
to underpredictions.

2.3 Discussion

We can see the results of the MLE loss function implementation for the practical
case of TW-TP DEM estimation as defined in section 1 in Table 1.

MSLE MLE

OWT1 OWT2 OWT3 OWT1 OWT2 OWT3

FA SS FA SS FA SS FA SS FA SS FA SS

R2 0.89 0.92 0.86 0.93 0.88 0.92 0.92 0.98 0.87 0.96 0.92 0.99
δLT (%) 7.34 11.3 7.25 10.1 6.72 11.9 -0.5 -0.1 1.11 -1.2 1.19 0.59

Table 1: Comparison of models’ performance for MSLE and MLE (R2 and long
term DEM error, δLT ) for the three turbine in each direction (fore-aft, FA and
side-to-side, SS).

In this table we can see how the introduction of a Φ-ML approach for the loss
function greatly improves the models’ performance on the long term accumula-
tions of Equation 1.2 (δLT , with an added incentive for overpredictions), whilst
retaining and even slightly improving the 10-minute estimation performance
(R2). Moreover, the negative values δLT indicate that the model is overpredict-
ing, as intended.
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Finally, we can investigate the loss function landscape by checking how the
variation of the value of p affects the PINN’s performance (Figure 2).

(a) Longterm DEM error (%) (b) R2

Fig. 2: Effect the variation of p has on model performance (95% confidence
interval). For each value of p, 10 models were generated and evaluated.

In this figure, one can see a similar behaviour both for SS and for FA. Left
of p = m = 5, both the long-term errors and R2 are in-par, albeit slightly
increasing. We can understand this has being representative of Dvoretzky’s
theorem [7], wherein the distance of a finite-dimensional vector space can be
approximately defined as Euclidean (L2). The lowest error is evidently achieved
for p = m = 5. On the right side we have an almost linear increase of the
error with regards to p. Interestingly, we again see that, albeit with alterations
(namely its increase after p = 5), the R2 which gives us an idea of how the
model performs at a 10-minute level seems to not have a stong correlation with
the long-term accumulated DEM errors, particularly if p < m.
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