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Abstract. Most Deep neural networks use ReLU activation functions.
Since these functions are not differentiable in 0, we may believe that such
models may have irregular behavior. In this paper, we will show that the
issue is more in the data than in the model, and if the data are “smooth”,
the model will be differentiable in a suitable sense. We give a striking
illustration of this fact with the example of adversarial attacks.

1 Introduction

Deep neural networks are parametric models estimated mainly by minimizing a
cost function equivalent to the opposite of a log-likelihood. Namely, a quadratic
cost function is the opposite of Gaussian log-likelihood, and cross-entropy is
the opposite of categorical (or multinomial) log-likelihood. Such a choice is
suitable since it is well known that if the model is “smooth”, the maximum
likelihood estimator has optimal asymptotic properties (see van der Vaart [2],
chapter 8). In the following section, we will give the conditions such that Deep
Neural Networks are differentiable in quadratic mean and therefore are smooth
statistical models. To be concise, we will restrict our study to the classification
case, but the generalization to a regression framework is straightforward. The
conditions show the importance of the data for the smoothness of the model. In
the last section, to illustrate our paper, we give an example where smoothing
the data prevents adversarial attacks.

2 Deep networks for classification

First, we will give a classical statistical framework for the classification problem.

2.1 Classification models

An observation is represented by a p-dimensional vector x ∈ R
p and a class

y. The class y is a categorical variable, y may be coded as a set of inte-

gers {1, · · · ,K}. Let

(
X
Y

)
be a random vector with probability density

{Pθ, θ ∈ Θ}, where θ is the parameter vector (the weights) of the model and
Θ the set of possible parameters. Let us denote Q the marginal law of X . For

any parameter vector θ ∈ Θ, the density will be Pθ(x, y) =
∏K

k=1 f
1k(y)
θ(x),kQ(x),

where fθ,k(x) is k-th the output of the Deep network. Note that the marginal
law Q of X is not a parameter of interest for most classification models.
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We will try to estimate the probabilities of the classes, conditionally to the
observation x: fθ(x) = (Pθ(y = k|x))1≤k≤K . For an observation x ∈ R

p, the

deep network function from R
p into R

K , with L layers can be written as a
composition: fθ(x) = fout ◦ φL ◦ fL ◦ · · · ◦ φ1 ◦ f1(x), where fl is a linear preac-
tivation function: xl = fl(xl−1) = Wlxl−1 + bl. The parameter θ is composed
of input weight matrices Wl ∈ R

dl×dl−1 and bias vectors bl ∈ R
dl . The ac-

tivation of the i-th unit in the l-th layer is given by xl,i = φl (fl,i(xl−1)) . φl

is, in general, the ReLU activation function: φl(x) = max(0, x) or continuous
pooling functions like averages or maxima. The output of the l-th layer is a
vector xl = (xl,1, · · · , xl,dl

)
T
. fout is a function to compute the probabilities of

classes {1, · · · ,K}: ((fout(xL))k)1≤k≤K = softmax
(
WT

outxl−1 + bout

)
, where

softmax(z1, · · · , zK) =
(

exp(zk)∑
K
l=1 exp(zl)

)
1≤k≤K

.

2.2 Maximum likelihood estimator

Let

((
x1

y1

)
, · · · ,

(
xn

yn

))
be a realization of the ramdom sample((

X1

Y1

)
, · · · ,

(
Xn

Yn

))
. We consider the opposite of the log-likelihood (con-

ditional to the explicative data x1, · · · , xn):

−lθ

((
x1

y1

)
, · · · ,

(
xn

yn

))
= −

n∑
t=1

K∑
k=1

1k(yt) log (fθ,k(xt))

This function is often called the cross-entropy. The estimated parameter θ̂n is
the maximum likelihood estimator (MLE):

θ̂n = argmin
θ∈Θ

−lθ

((
x1

y1

)
, · · · ,

(
xn

yn

))

3 Differentiability in quadratic mean

Let us denote ξθ (x, y) =
√
Pθ (x, y) and μ a dominating measure for {Pθ (x, y) , θ ∈ Θ}.

We denote now by ‖.‖, the L2-norm with respect with μ. A family of proba-
bilities is said differentiable in quadratic mean in θ0 (see Pollard [3]), if for a
d-vector Δθ0 (x, y) of functions in L2 (μ),

ξθ (x, y) = ξθ0 (x, y) + (θ − θ0)
T
Δθ0 (x, y) + r (x, y, θ − θ0) ,

where
∫ ‖r (x, y, θ − θ0)‖ dμ(x, y) = o (‖θ − θ0‖) when θ → θ0. This entails the

existence of a vector of a measurable function l̇θ =
(
l̇θ,1, · · · , l̇θ,d

)
such that

∫ (
ξθ+h − ξθ − 1

2
hl̇θξθ

)2

dμ = o (‖h‖) , when h → 0. (1)
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This property is fundamental for the smoothness of the model and optimal prop-
erties of the MLE. To show the importance of this property, we will give an
example of what happens when it is not verified.

3.1 A minimal counter-example

Let x ∈ {−1, 1}, fθ(x) = αmax(βx + γ, 0), where θ = (α, β, γ). Then the
function is not differentiable on the sub-manifold S = {β = γ} ∪ {β = −γ}. We
get the derivatives:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂β fθ(x) =

∂
∂γ fθ(x) = 0 if x = 1, and β < −γ

∂
∂β fθ(x) =

∂
∂γ fθ(x) = α if x = 1, and β > −γ

∂
∂β fθ(x) =

∂
∂γ fθ(x) = 0 if x = −1, and β > γ

− ∂
∂β fθ(x) =

∂
∂γ fθ(x) = α if x = −1, and β < γ

The derivative will not be continuous as soon as α �= 0, and there is no hope to
find a function Δ such that√

P(α,β+h,−β)(x, y)−
√
P(α,β,−β)(x, y)−Δ(α,β,−β)(x, y) = o(h)

or√
P(α,β+h,β)(x, y)−

√
P(α,β,β)(x, y)−Δ(α,β,β)(x, y) = o(h)

Hence, a slight variation of the inputs or the parameters may result in a signifi-
cant variation in the model’s output. However, we will prove in the next section
that this example can not occur if some components of the explicative variable
x have a density with respect to the Lebesque measure.

3.2 Differentiability in quadratic mean for Deep network models

To establish the differentiability in quadratic mean, we have to show the differ-
entiability of the map θ �→ Pθ(x, y) for almost all (x, y). We must pay attention
that for Deep networks with ReLU transfer functions, the set where the map
θ �→ Pθ(x, y) is not differentiable is a function of the variable x. The following
theorem is well suited for Deep networks:

Theorem 1 Let us split the variable x into x = (x1, x2), where x1 is discrete
and belongs to a countable set C, and x2 is continuous and has a density with
respect to the Lebesgue measure. Let us write Θ̊ the interior of the set Θ. For all
θ ∈ Θ̊, let Pθ (x, y) be a density of probability such that for all (x, y), θ �→ Pθ (x, y)
is continuous.

1. Assume that for all θ ∈ Θ̊, the set N (θ) of x2 such that x2 �→ ξθ (x, y) is
not differentiable is of Lebesgue measure null: λ (N (θ)) = 0.

2. A square integrable function l̇ (x, y) exists such that ∀θ ∈ Θ̊,

‖∂ξθ (x, y)
∂θ

‖ ≤ l̇ (x, y) .
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Then the map θ �→ ξθ (x, y) is differentiable in quadratic mean, i.e. for all θ ∈ Θ̊,
a mesurable function l̇θ (x, y) exists, such that:∑

x1∈C,y
P (x1, y)

∫ (
ξθ+h (x, y)− ξθ (x, y)

‖h‖ − 1

2

h

‖h‖
T

l̇θ (x, y) ξθ (x, y)

)2

dλ(x2)
h→0−→ 0.

proof By the chain rule, for all fixed x, y, for θ ∈ Θ̊ we get:

∂fθ (x, y)

∂θ
=

∂ξ2θ (x, y)

∂θ
= 2ξθ (x, y)

∂ξθ (x, y)

∂θ
.

Hence, we can write

∂ξθ (x, y)

∂θ
=

1

2

∂fθ(x,y)
∂θ

fθ (x, y)
ξθ (x, y) :=

1

2
l̇θ(x, y)ξθ (x, y) ,

where
∂fθ(x,y)

∂θ

fθ (x, y)
:= 0 on {(x, θ) , fθ (x, y) = 0} .

Since, for all (x, y), θ �→ ξθ (x, y) is continuous, for fixed h ∈ R
k,

ξθ+h (x, y)− ξθ (x, y) =

∫ 1

0

1{Θ̊} (θ + uh)hT ∂ξθ+uh (x, y)

∂θ
du.

For fixed (x1, y), Fubini theorem implies:

∫ (
ξθ+h (x, y)− ξθ (x, y)

‖h‖
)2

dλ(x2) =

∫ (∫ 1

0

1{Θ̊} (θ + uh)hT ∂ξθ+uh (x, y)

∂θ
du

)2

dλ(x2) ≤∫ 1

0

1{Θ̊} (θ + uth)
hT

‖h‖∫ (
∂ξ (θ + uth, x)

∂θ

(
∂ξ (θ + uth, x)

∂θ

)T

dλ(x2)

)
h

‖h‖du =

∫ 1

0

1{Θ̊} (θ + uth)
hT

‖h‖
1

4

(∫
1{X/N (θ+uth)} (x) l̇θ+uth(x)

(
l̇θ+uth(x)

)T
fθ(x, y)dλ(x2)

)
h

‖h‖du.
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For t → 0:∫ 1

0

1{Θ̊} (θ + uth)
hT

‖h‖
1

4

(∫
1{X/N (θ+uth)} (x) l̇θ+uth(x)

(
l̇θ+uth(x)

)T
fθ(x, y)dλ(x2)

)
h

‖h‖du

t→0−→ 1

4

hT

‖h‖
∫

1{X/N (θ)} (x) l̇θ(x)
(
l̇θ(x)

)T
fθ(x, y)dλ(x2)

h

‖h‖ .

So, for all sequences (tn)n∈N
, with tn

n→∞−→ 0:

lim
n→∞ sup

k≥n

∫ (
ξ (θ + tkh, x)− ξ (θ, x)

‖tkh‖
)2

dλ(x2) =

lim
n→∞

∫ (
ξ (θ + tnh, x)− ξ (θ, x)

‖tnh‖
)2

dλ(x2) ≤

1

4

hT

‖h‖
∫

1{X/N (θ)} (x) l̇θ(x)
(
l̇θ(x)

)T
fθ(x, y)dλ(x2)

h

‖h‖ .

Finally, for x /∈ ∪n∈NN (θ + tnh) ∪ N (θ):

ξ (θ + tnh, x)− ξ (θ, x)

‖tnh‖ − 1

2

hT

‖h‖
∂ξ (θ, x)

∂θ

n→∞−→ 0,

and we conclude with proposition 2.29 of van der Vaart [2]. �

Remark To check the previous assumptions for Deep networks with ReLU
transfer function, we remark that these models may be written as continuous
piecewise linear functions. Let us write IP the indicator function of the region P ,
and denote by N the total number of hidden units of the Deep network. Then,
according to Rynkiewicz [4], an integer q ≤ 2N exists such that, for any θ ∈ Θ,
fθ can be written:

fθ(x) =

q∑
i=1

(
βi

Tx+ αi

)
× IPμ(i)

(x),

with (βi, αi) ∈ R
p+1, μ(i) a set of parameters and

(
IPμ(1)

(.), · · · , IPμ(q)
(.)
)
are

linearly independent indicator functions of regions of hyperplane arrangement.
Hence, if some components of x have a density with respect to the Lebesgue
measure and the weights of the network are bounded, the assumptions of the
previous theorem are checked.

4 Example of adversarial attack

A practical consequence of differentiability in quadratic mean is that a small
perturbation of the parameter, or the input, will result in a small variation of
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the model’s prediction. This seems in contradiction with an adversarial attack
where a well-chosen small perturbation of the input can drastically change the
true class’s probability. An example is given in the tutorial [6]. However, if this
attack works, it is essentially because the pixel of an image are discrete inputs
(256 values for each color channel). If we add Gaussian noise to the pixels, the
pixels will have a density with respect to the Lebesgue measure, and the model
will be smooth. This idea is not new and has been explored, for example, in
[5]. However, our interpretation of the efficiency of this technics is new. For
example, in the tutorial [6], a hog photo is classified as a hog with a probability
0.996, and the authors compute a small perturbation δ to lower this probability.
So, the probability of the hog class of x+ δ will be lesser than 10−5. Moreover,
the probability of the wombat class will be more than 0.999. Now, if we add
a Gaussian noise ε on the modified input: x + δ + ε = x + ε + δ we get back
a probability to be a hog of more than 0.99. Hence the model with noised
input is smooth, and its prediction is no more perturbated by small noise. The
experiment can be found in the Colab Notebook [7].

5 Conclusion

If the data are discrete, a Deep network with ReLU transfer functions is not a
smooth statistical model and is vulnerable to perturbations. The main example
is the adversarial attack see [1]. However, we have shown in this paper that
a simple transformation of the input data can regularize the model, and avoid
adversarial attack. Note that we do not modify the weights of the network.
Hence, we strongly advocate systematically adding noise to input data when
possible, especially for the inference, to robustify the prediction of the model.
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