
Deep Convolutional Neural Networks with
Sequentially Semiseparable Weight Matrices

Matthias Kissel and Klaus Diepold

Technical University of Munich - Chair of Data Processing
Arcisstr. 21 - 80333 Munich - Germany

Abstract. Modern Convolutional Neural Networks (CNNs) comprise
millions of parameters. Therefore, the use of these networks requires high
computing and memory resources. We propose to reduce these resource
requirements by using structured matrices. For that, we replace weight
matrices of the fully connected classifier part of several pre-trained CNNs
by Sequentially Semiseparable (SSS) Matrices. By that, the number of pa-
rameters in these layers can be reduced drastically, as well as the number
of operations required for evaluating the layer. We show that the combi-
nation of approximating the original weight matrices with SSS matrices
followed by gradient-descent based training leads to the best prediction
results (compared to just approximating or training from scratch).

1 Introduction

Modern Convolutional Neural Networks (CNNs) consist of many layers and mil-
lions of parameters. By that, they are able to achieve remarkable results in
image-based problem domains, like image recognition [1, 2]. However, as the
number of parameters increases, so does the computational effort required for
deploying the network. This is especially a problem for applications targeting
mobile devices or embedded hardware like microcontrollers. For these applica-
tions, the use of modern CNN architectures is often not possible due to insuffi-
cient computing and / or memory resources.

Deep CNNs are often designed similarly. First, there is a feature extractor
part, which consists of convolutional and pooling layers. After the feature ex-
tractor part, the activations are flattened and put into the classifier part. The
classifier usually consists of fully-connected feed-forward layers. A large part of
the parameters of the network is typically located in the classifier part, since the
parameters in the convolutional filters are shared. As a result, evaluating the
classifier part involves performing large matrix-vector multiplications.

Our goal is to reduce the resources needed in the classifier part of deep CNNs.
For that, we focus on the last (i.e. fully-connected) layer of the network. Prop-
agating information through this layer requires O(nm) operations for a weight
matrix W ∈ Rn×m. This order of magnitude can be reduced to the subquadratic
domain if the weight matrix of the layer has a specific structure. Particularly, we
are interested in using Sequentially Semiseparable (SSS) matrices as weight ma-
trices in neural networks. This matrix structure typically arises when describing
linear time-varying systems [3].

Our contribution is two-fold. First, we investigate the effect of replacing the
last weight matrix of several state-of-the art CNN models with a SSS matrix. By

223

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

that, we can analyze the trade-off between number of parameters and prediction
accuracy of the overall recognition model. Second, we study the influence of the
method used to bring the structure into the neural network. Here, we compare
the achieved prediction performance of different approaches like approximating
the weight matrix, training an SSS weight matrix from scratch, or the combined
approach of approximation and training.

The rest of this paper is organized as follows. We first give an overview
over approaches in literature, which use structured matrices in the context of
neural networks. Subsequently, we introduce the methods we use to bring the
SSS structure into the neural network. In Section 4, we present and discuss our
experimental results. Finally, we draw a conclusion.

2 Literature Review

Several approaches in literature proposed the use of structured matrices in neural
networks. In this context, matrices of low displacement rank are often used [4].
Prominent representatives of this structure class are Toeplitz matrices, which are
connected to CNNs. Other approaches focused on Toeplitz-like weight matrices
[5], or trained the operator matrices together with the low-rank components end-
to-end in a neural network [6]. Moreover, it has been shown that the universal
approximation theorem holds for neural networks with weight matrices of low
displacement rank [7].

Other matrix structures used in neural networks are hierarchical matrices [8]
and products of sparse matrices [9]. For example, Fan et al. [10] proposed to use
hierarchical matrices in neural networks. Later, they extended their approach to
H2 matrices [11]. Several authors proposed to use products of sparse matrices
(particularly butterfly matrices) in neural networks [9, 12, 13, 14]. The idea here
is that the product of sparse matrices is not sparse in general. Therefore, many
dense matrices can be represented as a product of sparse matrices.

3 Methods

Our goal is to replace a weight matrix W ∈ Rn×m from a trained neural network
with an SSS matrix Ŵ . The SSS matrix has the form

Ŵ = D + C(I − ZA)−1ZB +G(I − ZTE)−1ZTF. (1)

Here, I is the identity matrix and Z is a down-shift matrix containing ones
on the subdiagonal and zeros everywhere else. A, B, C, D, E, F and G are
block-diagonal matrices, where each matrix contains p sub-matrices

A = diag([A1, . . . , Ap]) (2)

(B, C, D, E, F and G matrices respectively). This structure naturally arises
when describing time-varying systems [3], where matrices A, . . . , G explain the
behavior of a system. For example, C maps the state of the system to the

224

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

output, and D maps the inputs of the system to the outputs. Note that the
dimensions of the Ak, Bk, Ck, Dk, Ek, Fk and Gk matrices can change for
different k = 1, . . . , p. This is due to the fact that input, state and output
dimensions might change over time.

We explore two approaches for replacing a given weight matrix with an SSS
matrix. The first approach starts from a randomly initialized SSS matrix, which
is trained using Backpropagation through States [15] (this is a data-driven ap-
proach). In contrast, no training data is required for the second approach. In-
stead, the original weight matrix is approximated using a model order reduction
method. For both approaches, suitable dimensions for Ak, . . . , Gk need to be
found. We set these dimensions with the aim to achieve a uniform distribution
of the input and output dimensions in the SSS representation. This means, that
for a given weight matrix W ∈ Rn×m, which is to be approximated with an SSS
matrix with p stages, the resulting input dimensions dim(uk) are

dim(uk) =

{
floor(m

p) + 1 for k ≤ m− floor(m
p)p,

floor(m
p) else

(3)

(output dimensions analogously). The dimension of the states dk is fixed to be
constant for all k (dk = d for all k). We treat d as a hyper parameter to control
the number of parameters available in the SSS matrix.

We use Backpropagation through States in order to train SSS weight matrices.
The key idea of the algorithm is to derive the training loss L with respect to
the parameters of the structure, not with respect to the entries of the resulting
weight matrix Ŵi,j . This results in gradients of the form

δL
δAk

,
δL
δBk

,
δL
δCk

,
δL
δDk

,
δL
δEk

,
δL
δFk

,
δL
δGk

. (4)

We compute these gradients using automatic differentiation as provided by the
pytorch machine learning framework1. The other steps of the training procedure
remain the same as in standard neural network training.

In order to approximate a given weight matrix with an SSS matrix, we use a
model order reduction method [3, 16]. This is based on the standard approach
for finding a balanced state-space realization for a given transfer operator (which
is the original weight matrix in our case). As part of the realization algorithm,
the Hankel matrices Hi of the operator are decomposed into observability and
controllability matrices (Oi and Ci respectively) using the Singular Value De-
composition

Hi = UiSiV
T
i , Oi = Ui

√
Si, Ci =

√
SiV

T
i . (5)

At this step, we cut out the smallest singular values until the realization has
the desired state dimension (d in our case). By that, we obtain a realization
Ŵ , which performs similar to the original weight matrix W , but with a reduced
amount of parameters. This procedure is called balanced model reduction for
time-invariant systems [3].

1https://pytorch.org/

225

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

AlexNet GoogleNet InceptionV3 MobilenetV2 Resnet18 VGG16

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Animal Classes

AlexNet GoogleNet InceptionV3 MobilenetV2 Resnet18 VGG16

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Object Classes

Original

SSS from scratch

SSS approximated

SSS finetuned

Fig. 1: Approximation with subsequent training led to the best results for all
models (the resulting SSS matrix comprises 20% of the parameters).

4 Results

We conduct experiments with pretrained deep convolutional neural networks
obtained from pytorch, namely AlexNet, VGG16, ResNet18, InceptionV3, Mo-
bilenetV2, and GoogleNet. The models are pretrained on the ImageNet 2012
dataset for image recognition [17]. For our experiments, we selected two subsets
of images from the overall Imagenet dataset. Each subset comprises 100 classes
from the original dataset (animals and objects), whereas each class comes with
approximately 1000 training images and 50 validation images. By that, we can
compare the effects on two distinct datasets for several models. We report the
mean and standard deviation of the accuracy on the ImageNet validation set.
This set has not been used in our training procedure (but it might have been
used for pretraining the models).

We replace the weight matrix of the last, fully-connected layer with an SSS
matrix. For this, we compare three approaches: Approximating the weight ma-
trix, approximation followed by training, and training the sequentially semisep-
arable matrix from scratch (after random initialization). Our code used for
conducting the experiments can be found online2.

Replacing the original weight matrix with an SSS matrix obtained from bal-
anced model reduction consistently led to bad prediction accuracy for the result-
ing model in all experiments. However, the combined approach of approximation

2https://github.com/MatthiasKi/structurednets

226

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Last Weight Matrix Parameter Share

0.0

0.2

0.4

0.6

0.8

La
st

 L
ay

er
 C

om
pu

ta
tio

n
Du

ra
tio

n
[m

s]

Computation Duration

SSS

Original

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Last Weight Matrix Parameter Share

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

Ac
cu

ra
cy

Overall InceptionV3 Accuracy

Fig. 2: Evaluating the last layer of the InceptionV3 model requires less time
after replacing the weight matrix with an SSS matrix. However, the prediction
accuracy of the InceptionV3 model also decreases.

followed by training led to better results than training a similar SSS matrix from
scratch. The achieved final accuracy is lower than when using the original weight
matrix, whereas the gap between the original accuracy and the accuracy of the
model with SSS matrix depends on the model. For some models, the combined
approach of approximating and training the SSS weight matrices achieved very
good results, yielding a good trade-off between reduction in parameters and
reduction of accuracy in these models. These results are depicted in figure 1.

Besides the accuracy of the final model, we are also interested in the duration
required for running inference. For that, we compared the time required for
evaluating the last layer of the InceptionV3 model (depicted in Figure 2). This
speed comparison is implemented in C and executed on a single CPU core (of an
Intel Core i-7-8750H CPU with 2.20 GHz). The time required for evaluating the
matrix-vector multiplication increases with the number of parameters in the SSS
matrix. For all investigated parameter shares the required computation time is
significantly lower after replacing the original weight matrix with an SSS matrix.

5 Conclusion

We analyzed the effect of replacing weight matrices in the dense layers of deep
CNNs with SSS matrices. The resulting modified layers require significantly less
parameters to be stored, and can be evaluated much faster than the original
layers. This is due to the structure of the SSS matrix, which facilitates efficient
matrix-vector multiplication with subquadratic order of operations.

Our results showed that there is a trade-off between reducing the number
of parameters and decrease in prediction accuracy. The performance depends
on the number of parameters in the SSS matrix and the model at hand. We
conclude that there is a lot of potential in the approach of optimizing trained
neural networks by introducing SSS matrices.

227

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

References

[1] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[2] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[3] Patrick Dewilde and Alle-Jan Van der Veen. Time-varying systems and computations.
Springer Science & Business Media, 1998.

[4] Victor Pan. Structured matrices and polynomials: unified superfast algorithms. Springer
Science & Business Media, 2001.

[5] Vikas Sindhwani, Tara N Sainath, and Sanjiv Kumar. Structured transforms for small-
footprint deep learning. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 2, pages 3088–3096, 2015.

[6] Anna T Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré. Learning com-
pressed transforms with low displacement rank. Advances in neural information process-
ing systems, 2018:9052, 2018.

[7] Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, and Bo Yuan. Theoretical prop-
erties for neural networks with weight matrices of low displacement rank. In international
conference on machine learning, pages 4082–4090. PMLR, 2017.

[8] Wolfgang Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49.
Springer, 2015.

[9] Tri Dao, Nimit Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski,
Atri Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for
all structured linear maps. In International Conference on Learning Representations,
2020.

[10] Yuwei Fan, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núnez. A multiscale neural
network based on hierarchical matrices. Multiscale Modeling & Simulation, 17(4):1189–
1213, 2019.

[11] Yuwei Fan, Jordi Feliu-Faba, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núnez. A mul-
tiscale neural network based on hierarchical nested bases. Research in the Mathematical
Sciences, 6(2):1–28, 2019.

[12] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast
algorithms for linear transforms using butterfly factorizations. In International Confer-
ence on Machine Learning, pages 1517–1527. PMLR, 2019.

[13] Luc Giffon, Stéphane Ayache, Hachem Kadri, Thierry Artières, and Ronan Sicre. Psm-
nets: Compressing neural networks with product of sparse matrices. 2021.

[14] Nir Ailon, Omer Leibovitch, and Vineet Nair. Sparse linear networks with a fixed butterfly
structure: theory and practice. In Proceedings of the Thirty-Seventh Conference on
Uncertainty in Artificial Intelligence, volume 161, pages 1174–1184. PMLR, 2021.

[15] Matthias Kissel, Martin Gottwald, Biljana Gjeroska, Philipp Paukner, and Klaus Diepold.
Backpropagation through states: Training neural networks with sequentially semisepara-
ble weight matrices. Proceedings of the 21st EPIA Conference on Artificial Intelligence,
2022.

[16] Matthias Kissel, Sven Gronauer, Mathias Korte, Luca Sacchetto, and Klaus Diepold.
Exploiting structures in weight matrices for efficient real-time drone control with neural
networks. Proceedings of the 21st EPIA Conference on Artificial Intelligence, 2022.

[17] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision (IJCV), 115(3):211–252, 2015.

228

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

