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Abstract. We present an application of interactive dimensionality reduc-
tion (DR) for exploratory analysis of gene expression data that produces
two lively updated projections, a sample map and a gene map, by render-
ing intermediate results of a t-SNE. The user can condition the projections
“on the fly” by subsets of genes or samples, so updated views reveal co-
expression patterns for different cancer types or gene groups.

1 Introduction

Gene expression data analysis is one of the key tools in biomedical research.
The underlying processes taking place in cancer involve complex interactions
among the genes and other factors, with up or down regulations at different
transcriptional stages. As a result, the levels of expressions in the genes form
a transcriptomic signature that can be used to study, differentiate, detect and
diagnose cancer. Typically, the levels of expressions of thousands of genes are
measured for hundreds of samples taken under different biological conditions,
such as types of cancers. A widely used approach consists in using DR tech-
niques like the t-distributed stochastic neighbor embedding (t-SNE) to visualize
the samples in two dimensions [1] so near points represent transcriptomically
similar samples. While most papers focus on projecting samples, genes can also
be projected, as in [2], where a dual t-SNE is used for transcriptome-wide and
sample-wide exploration of gene expression data. However, existing approaches
assume transcriptomic similarities in all genes and samples, potentially ignoring
associations of groups of genes with groups of samples. In this paper, we propose
a method based on interactive DR [3], to produce simultaneous free-running sam-
ple and gene maps, allowing human in the loop user selection of groups of genes
or samples to update both maps. We present encouraging results of our approach
through three case studies. See demo at https://gsdpi.edv.uniovi.es/GEM-iDR.

∗This work is part of Grant PID2020-115401GB-I00 funded by MCIN/AEI/
10.13039/501100011033. The results shown here are based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga.
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2 Materials and Methods

2.1 Gene expression matrix

A Gene Expression Matrix (GEM) can be defined as a n×mmatrixG = (gij) for
which the row index, i, represents biological samples under different conditions
(e.g. cancer types or subtypes) the column index, j, represents genes and the
value gij represents the expression level of gene j for sample i. We define the
sample vector xs

i = gi∗ ∈ Rm as a vector containing the gene expressions of
sample i for all the m genes included in G. Similarly, the gene vector xg

j =
g∗j ∈ Rn contains the expressions of gene j across the n samples of G.

2.2 DR projections of samples and genes

DR algorithms can be applied to visualize the samples according to their tran-
scriptomic similarity. DR algorithms can produce a mapping φs : Rm → R2

where ys
i = φs(xs

i ), that tries to preserve the neighborhood, so sample vectors
xs
i ,x

s
j that show a similar transcriptomic profile (similarity in the input space),

are mapped to close 2D positions ys
i ,y

s
j . Scatterplot visualizations of the pro-

jections ys
i reveal a genetic map of the samples in the dataset, whereby clusters

represent groups of samples with similar transcriptomic behavior, providing a
valuable information for the biomedical scientist that can also be integrated in
more sophisticated data analytics interfaces.

Similarly, a dual projection can be carried out with the gene vectors φg :
Rn → R2 where yg

j = φg(xg
j ). A scatterplot visualization of the yg

j , called
gene view, complementary to the sample view, reveals the similarities among
the genes regarding their expressions across all the samples in the GEM.

2.3 Dual interactive dimensionality reduction

The dynamics of an iterative DR algorithm for the sample view1 can be conve-
niently described –see [4], section 5– in terms of a flattened configuration vector
ys containing all the coordinates of the sample projections ys = (ys11,y

s
12, y

s
21, y

s
22,

. . . , ysn1 ,ysn2)
T , so ys(k) completely defines the current state of the sample view

at iteration k. At each iteration, the DR algorithm can be defined in terms of a
general nonlinear state function f() returning an updated configuration, based on
the former configuration and an input configuration vector us(k) containing the
input data xs(k) and the algorithm parameters2 w(k). Considering both the
sample and the gene projections, the dynamics of convergence resulting from
user interaction can be described as:

ys(k + 1) = f(ys(k),us(k)), yg(k + 1) = f(yg(k),ug(k)) (1)

The idea behind interactive DR is to render ys(k) and yg(k) for every iteration
k, during convergence, in an infinite loop along which the user can modify or

1The gene view has an identical dual formulation.
2It may include hyperparameters of the algorithm (such as, perplexity in t-SNE), but may

also include parameters of the distance metrics to compute similarities, as used here.
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condition the analysis by acting inw(k), or even the input data might be changed
during the analysis –see Fig.1. The main advantage of this approach is that it
results in smooth transitions among the steady-state optima, thereby keeping
the user’s mental model of the data across the different conditions.

In the problem of analyzing a GEM, the input data xs(k),xg(k) do not
change. In our proposal the user can act on w(k), by alternatively, selecting a
subset of genes to compute the similarities among the samples, or selecting a
subset of the samples to compute the similarities among genes. In the first case
(the second case is analogous), this can be achieved by changing the distance
metric “on the fly” (i.e. during convergence), according to a selection G of the
genes done at interaction time by the user, as dsG(x

s
i ,x

s
j) =

∑n
k=1 w

g
k(x

s
ik−xs

jk)
2

where wg
k = 1 if k is a selected gene, and wg

k = 0 in other case.
The rationale behind this design is rooted in several biomedical considerations

[5]. An effective exploratory analysis of how samples of different types of tumors
stay together, or remain apart, due to variations in expression of a single gene or
sets of genes, can be used to dissect the complexity and heterogeneity of tumors,
and to discover new biomarkers or therapeutic strategies. A common strategy is
to classify the transcriptome data into sets of functional modules that are easy to
understand; being able to explore novel clusters of genes with similar behaviors
for given subsets of samples (e.g. cancer types or subtypes) enable generation
of hypotheses that may improve the discovery processes.

3 Results and discussion

We implemented the proposed interactive approach to analyze a total amount
of 449 samples with 571 gene expression measurements each, obtained from the
TCGA database. The samples contain 157 pheochromocytoma and paragan-
glioma (PCPG), 221 kidney renal clear cell carcinoma (KIRC) and 71 renal
normal tissue. Each sample was defined by the expression levels of 442 hypoxia-
related genes and 129 microRNA (miRNA).

3.1 Case 1: behavior of cancer subtypes for specific gene clusters

At the initial state, the interface computes the t-SNE projections3 of the sample
view and the gene view considering all the genes and all the samples. Both views
in the initial state are labeled in Fig. 2 with t = 0s. In the initial gene view,
the user can already observe that genes become spatially organized according
to relevant functional groups associated to known mechanisms taking place in
different cancer types, such as angiogenesis, development of extracellular matrix
(ECM) proteins, and hypoxia. The samples, in turn, are organized in three
clearly differentiated clusters corresponding to kidney renal clear cell carcinoma
(KIRC, yellow), pheochromocytoma and paraganglioma (PCPG, blue), and re-
nal normal tissue (green). A special group of PCPG with a mutation in the VHL
gene affecting its function in the hypoxia pathway has also been marked in red.

3We used perplexity=20 and early exaggeration = 12, to ensure a stable initial state.
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Fig. 1: Workflow of the approach (video: https://youtu.be/n97DyuV1e24)

At this point the user can explore how the samples are distributed according
to their similarity in specific groups of genes. This can give useful knowledge
about whether known mechanisms involved in the selected genes differentially
affect some sample groups over others. Selecting the genes in the area related
to angiogenesis on the gene view, the user constrains the distance metric to
angiogenesis, disregarding the other functions. The three rightmost pictures
in Fig. 2 show frames of the animated sample view at three different times
t = {0s, 6s, 12s}. It can be observed that the three initial clusters corresponding
to PCPG, KIRC and normal renal tissue, smoothly change, so PCPG and KIRC
are merged into a single cluster, while normal tissue remains apart. This suggests
a specific role of angiogenesis in cancer processes that takes place in a different
way in normal tissue. Obviously, further exploration selecting other groups of
genes can be done along the analytics session.

3.2 Case 2: similarities of genes conditioned to cancer type

The proposed approach allows other different yet complementary analyses. In
this case, a cluster of microRNA (miRNA) was located by the user in the gene
view (red dots in Fig. 3, A). Such cluster corresponds to miRNA that are simi-
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Fig. 2: Case 1. Impact of angiogenesis genes in characterization of KIRC/PCPG

Fig. 3: Different behavior of miRNA group for cancer subtypes

larly expressed across all samples, presumably sharing some common function-
ality or relationship. The user wants to check if the behavior of these elements is
similar for all the cancer subtypes. Selecting samples from one cancer type only,
reveals that the miRNA still form a distinct cluster (Fig 3, B and C). However,
selecting normal samples causes a spread of the group of miRNAs along the
whole gene map, revealing a remarkably different behavior of these miRNA for
normal samples (Fig. 3, D).

3.3 Case 3: over/under expression of genes across cancer subtypes

Another simple yet insightful use is to reveal singular levels of expression for a
gene. We explore the extreme expressions of miRNA -210-3p, which has been
shown in last years to be more consistently over-expressed in hypoxia tumors.
Arranging the samples using only this miRNA, leads to a 1D snake-shaped pro-
jection with all the samples sorted by -210-3p expression value. The user may
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Fig. 4: Case 3. Revealing location of up/down regulated hsa-miR-210-3p.

select and mark the head and tail sections with red and green colors. Rearranging
again the view using all genes, it smoothly returns to its original configuration,
revealing that this miRNA is overexpressed in KIRC [6].

4 Conclusion and future work

We have presented an interactive DR method able to produce two lively updated
projections of samples and genes, that can be conditioned by subsets of the
samples or the genes. The results presented through three case studies on TCGA
data, show how biomedically relevant patterns and relationships can be found,
and suggest this may be powerful approach for exploration of gene expression
data in combination with gene expression matrix visualization techniques.
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