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Abstract. The turbofan engine uses oil to lubricate and cool its components. This 

extremely sensitive system can cause in-flight engine shutdowns in the event of a 

failure. This article presents the implementation of a fully automatic anomaly 

detection system capable of detecting both known phenomena and exceptional cases 

using weak signals.  

1 Introduction 

Several algorithms developed by the PHM (Prognostics and Health Monitoring) team 

monitor the LEAP oil system. Most of these algorithms are based on a business 

approach by building indicators specific to each phenomenon to be monitored. They 

use snapshots type data (snapshots of measurements taken during several flight phases). 

The oil system may however present other types of operating anomalies not covered by 

existing algorithms, and which will not be detected because they are still unknown to 

the engineers. 

Since recently, we have access to continuous CEOD (Continuous Engine Operating 

Data) data collected during flights, which offers much richer content. It is probably 

possible with the help of this new functional type of information to identify original 

and unusual events. 

The proposed application is a generic algorithm (independent of the platform, even if 

it is only tested for the LEAP engine for the moment) capable of identifying weak 

signals. The tool is therefore not built for a specific anomaly, but on the contrary, it is 

able to detect any problem in the oil system before too much deterioration compromises 

the normal operation of the engine. 

Auto-encoders are increasingly used to detect local anomalies on time signals, for 

example acoustic data [1], or on electric actuators [2] which, unlike the heavier 

hydromechanical versions, can undergo a seizure phenomenon which must be 

controlled by analysis. These neural networks are often linked to classification models 

[3], [4] rather than just anomaly detection because they allow to reduce the dimension 

of signals and process them as a whole.  

2 Collected data 

CEOD data is made up of hundreds of measurements and calculations performed by 

the on-board computers and retrieved on the ground after each flight. To address the oil 

management system, we are only interested in 10 parameters, including 4 oil data 

parameters (quantity, temperature, main pressure, and pressure difference around the 
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filter) and 6 context data parameters (fan and core speed, fuel flow, external pressure 

and temperature, position of the fuel/oil temperature exchange system valve). All the 

corresponding time series have a frequency of 1Hz. To calibrate and validate the 

algorithms, we also use maintenance feedback information as well as on-board 

indicators developed by our PHM team. 

3 Methodology 

The objective is to detect abnormal behaviors on the 4 oil parameters without any prior 

knowledge in a given flight. This can occur on any time scale, at any time location and 

be potentially multivariate. To tackle this problem, the developed algorithm uses two 

fully convolutional auto-encoders. Indeed, as oil system incidents are scarce events, the 

available database of recorded flights is mainly composed of signals with no anomalies. 

To take advantage of that, the auto-encoders are trained to encode and decode the 

nominal multivariate temporal patterns encountered during a common flight. Thus, 

when the models are fed with such an input, a good reconstruction is expected and on 

the other hand, a high reconstruction error would reveal the existence of a problem.  

The length of the time series motivates the use of convolutional layers: the mean 

duration of a flight is about 8000 seconds, which is beyond the memory capability of 

recurrent neural networks even based on GRU or LSTM cells, and convolutional layers 

are far easier to train on such long sequences. However, in order to detect an anomaly 

occurring on a certain time span, the top layer of a convolutional block (i.e. stack of 

multiple convolutional layers) encoding or decoding an input signal, must have a 

receptive field with respect to the input, of more or less the same temporal order of 

magnitude. This is especially true for mild and moderate abnormalities on signal 

dynamics developing slowly over time in which all parameters stay in their nominal 

range. Therefore, the use of two auto-encoders rather than one is preferable: to achieve 

a receptive field of thousands of seconds would require stacking dozens of layers 

resulting in a network with a great depth and number of parameters, difficult to train 

with a probable poor performance in the end. Skip connections commonly employed in 

this context are unusable as the objective is to reconstruct the input: the model would 

exploit these trivial pathways without learning anytime.  

The first auto-encoder, which will be called high frequency (HF), is based on filters 

exploiting the initial data at 1 Hz, and the second, low frequency (LF), will use a sub-

sampling at 0.01 Hz. The subsampling consists in dividing the 1Hz data in contiguous 

non-overlapping windows of length 100 time steps and taking the respective mean for 

each 10 parameters; if the last window is incomplete, the corresponding data is 

discarded. This subsampling procedure allows preserving the shape of the signals. 

Hence, in the rest of the paper the term flight refers to an entire multivariate time series 

of dimension 10 with a time resolution of 1Hz or 0.01Hz (obtained using the 

subsampling method described) from engine start to engine shut down. 

The low-frequency part is intended to detect large-scale unusual phenomena taking 

place over a long period, while the first auto-encoder will focus more on fast or almost 

instantaneous events. Figure 1 shows the detailed architecture of the models, the main 

difference being the use of stacked dilated convolutions to increase the receptive field 

of the blocks on the LF model. For each model, the output layer is a 1D convolution 

with 10 filters, a kernel size of 3 with padding and no activation. 

288

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



  

 

 

Figure 1. Architecture of the auto-encoders (LF model on the left and HF model on 

the right). The multiplication symbol and the parenthesis refer respectively to the 

number of dilated convolution layers stacked in the block and the number of filters 

The models are fully convolutional which makes it possible to handle easily flights 

with any duration: the HF and LF models require input multiple of 16 and 4 

respectively to output sequences of the same length. The input time series are padded 

with zeros to reach these requirements, after the subsampling step for the LF model, 

and the corresponding time steps are then ignored in their respective output. 

4 Training procedure 

The available database is divided in three datasets. The train dataset composed of 19567 

flights spread over 51 engines, is for the batch gradient descent algorithm. The 

validation data composed of 4909 flights spread over 25 engines, different from those 

belonging to the training set, is used for two purposes: initially to monitor any 

overfitting during the training phase and to compute the hyper-parameters of the 

anomaly score described in Section 5. The flights corresponding to these two data sets 

are selected taking care to extract the abnormal flights already identified, knowing that 

there is still a small proportion with anomalies, and with a large geographic and mission 

diversity. The test set is introduced in Section 6 and used to assess the models 

performance. The datasets for the LF model are the same as the HF model ones except 

for the subsampling pre-processing. Every sequences at training and inference time are 

standardized based on the 2 metrics, global mean and standard deviation of each 10 

parameters, computed beforehand from all flights of their respective training dataset. 

The auto-encoders are trained to reconstitute the input identically, using a 

reconstruction error based on least squares.  

In the case of the HF model, for the training phase only, to avoid too much padding 

caused by the different durations, each flight is divided in windows of 2000 seconds 

(which is a multiple of 16) with an overlap of 50%. If the length of the last window is 

lower, it is padded with zeros. Thereby, the HF model training instances consist in 
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chunks of flights of 2000 seconds. As far as the LF model is concerned, as the sequences 

length is one hundred times lower and the purpose of this model is to detect large-scale 

anomalies no slicing is performed. Entire flights with similar duration are gathered in 

4 buckets of amplitude 80 time steps (multiple of 4). The first bucket is filled with 

sequences whose length varies in the range [0, 80] and [240, 320] for the last one. Zero 

padding is applied on a flight inside a bucket if necessary to match the bucket upper 

bound. During a gradient training step, a bucket is randomly chosen and the batch is 

composed of flights contained in it. For both HF and LF models, ADAM optimizer is 

used with respective batch size of 64 and 32, along with the 1cycle learning rate policy 

[5]. The learning rate increases linearly from 1. 10−4 to 1.10−3 (from 5.10−5 to 5.10−4 

respectively) during the first half of the training then decreases linearly down to the 

initial value during the second half except in the last 10% epochs in which it drops 

linearly by 1000 orders of magnitude. The inertia of the gradient follows the inverse 

dynamic from 0.95 to a minimum of 0.85 and stays constant to 0.95 in the last 10% 

epochs. 100 epochs were sufficient to obtain a satisfactory reconstruction and no early 

stopping procedure was necessary. 

5 Anomaly scores 

The models are applied on the ground once the flight records have been retrieved and 

stored in a dedicated database. At inference time, each entire flights are given as input 

to the models to obtain the reconstructions. The observation of notable differences 

between the initial signal and its reconstruction therefore gives a good indication of an 

anomaly. This detection is made both on the reconstruction at 1 Hz and that at 0.01 Hz: 

two flight scores will therefore be calculated. Detection thresholds are defined for each 

score, and an anomaly will only be announced if at least one of the two scores exceeds 

its threshold.  

Each score 𝑆 uses only the 4 observations related to the oil system, the 6 other context 

variables are not taken into account. At each instant of a flight, a Mahalanobis deviation 

is calculated from the vector formed of the 4 reconstruction residues whose 

approximate normality is checked. The correlation matrix (different for each model) is 

calculated beforehand once and for all on the whole validation data, supposedly 

composed of flights without problems on the oil system, after stacking all the residual 

vectors in the time dimension. This allows calibrating the nominal reconstruction errors 

of the models on signals with no issues. 

 

 

𝑟𝑡
𝑗

= 𝑥̂𝑡
𝑗

− 𝑥𝑡
𝑗
, 𝑗 ∈ {1 … 4} 

Σ = 𝑐𝑜𝑣(𝑟) 

𝑠𝑡 = 𝑟′Σ−1𝑟 

𝑆 = ∑ 𝑠𝑡

𝑡,𝑠𝑡≥𝜃

  with an alert if  𝑆 ≥ 𝑁 

(1) 

 

To reduce data inconsistency, we will never consider the 3-minute measurements at the 

start and end of each flight: the corresponding time steps are ignored in the computation 

of S. During these periods, the combined effect of starting or stopping the engine 
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generates a side effect which degrades the precision of the algorithm. Moreover, if a 

flight duration is lower than 3000 seconds, the LF model is deactivated as the 

subsampling procedure suppresses too many information from the signals resulting in 

high false alarm rate on those sequences. 

The detection thresholds 𝜃 and 𝑁 (different for each model) were selected empirically 

according to the observed results on the validation data in order to calibrate the ratio of 

false and true positive on that set. They are chosen once and for all and will be used to 

compute the score of any flight of any engine. 𝜃 corresponds to a quantile of the 

distribution of all 𝑠𝑡 values of all flights of the validation set. The time series 𝑠𝑡 which 

can be seen as a normalization and aggregation of the residues of the 4 oil parameters 

helps to identify precisely the locations of the abnormalities in the entire flight which 

is an important information to understand the cause and provide a solution if applicable. 

Moreover, no correlations between the flight scores  and durations have been observed: 

it can be accounted for the fact that only very bad reconstructions, far beyond the usual 

expected model errors on nominal data, at specific time steps contribute to it. It makes 

it possible to follow and compare the scores for a given engine to spot potential trends. 

6 Experiment and results 

6.1 Tests 

To evaluate our solution, a beta-test was carried out early 2022 with the latest flights 

data available (~5000 flights per week). We collected data from 571 LEAP-1A engines 

in operation on Airbus A320s of which 167 presented anomalies detected by the 

algorithm. For the most part, these are standard events such as the detection of the 

beginnings of clogging of a filter or the overfilling of the oil tank and which have no 

consequence on the operability of the engines. 

More precisely, our database contains 61737 flights from those 571 engines of which 

871 flights (1.4%) show anomalies for 167 engines (29.2%). Among those 871 

detected, 560 where entirely analyzed, 287 were false alarms due to poor data feedback, 

missing data, or discontinuities during flights. Among the valid cases, 199 are sensor 

problems (managed by redundancy). 26 cases (concerning 9 engines) showed 

anomalies that had not been detected by existing PHM algorithm for the LEAP-1A. 

At this step, the algorithm shows a false positive rate of around 0.5%, i.e. 25 flights per 

week and an alert rate of 0.4 %, about 20 flights per week. Further work is planned to 

reduce the false positive rate, mainly caused by data quality issues. 

6.2 Example of anomaly detection 

Figure 2 shows the detection of a specific oil system anomaly. Under some degraded 

conditions, non-magnetic particles can temporarily obstruct the oil circuit and cause 

sudden variations in the tank level. This is what can be seen in graph D at the bottom 

right, which shows the oil level measurements, observed on the first flight after 

detection (graph A at the top left). We can see just to its left (graph C) that the oil 

temperature is perfectly restored (it would be the same for the pressures). Graph B at 

the top right shows the evolution of the score calculated from the high definition auto-

encoder. 
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Figure 2: Anomaly detected on an engine that was not part of the calibration and test 

dataset. A is the high-definition score over successive flights, B is the local high-

definition score computed during the first flight after detection, C is the expected 

(orange) and observed (blue) oil pressure and D shows the expected (orange) and 

observed (blue) oil level with a localized drop which is the signature of the non-

magnetic particles detection. 

7 Conclusion 

This very promising algorithm is still being studied with a view to integrating it on our 

operational monitoring system. It has already been transferred to the LEAP-1B engine, 

which equips the various versions of the Boeing 737. Other engine systems are also 

being considered for similar applications. 
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