
Reinforcement learning for constructing low

density sign representations of Boolean functions

Oytun Yapar1 and Erhan Oztop1,2

1Computer Science Department, Ozyegin University, Istanbul, Turkey
2SISReC, OTRI, Osaka University, Osaka, Japan

Abstract. Boolean functions (BFs) can be uniquely represented with
polynomial functions by representing True and False with ±1. With the
’sign-representation’ framework, i.e., when the sign of the polynomials is
used instead of the exact±1, the representation is not unique anymore, and
several measures of sign-representation become the target of research. One
such measure is the polynomial threshold function density (PTF density),
i.e., the minimum number of monomials that suffices to sign-represent
a given BF. Several algorithms can find sign-representations with a low
number of monomials; however, to find a representation with the mini-
mum number of monomials possible is a combinatorial search problem.
The recent success of reinforcement learning (RL) algorithms in solving
combinatorial search problems poses the question of whether RL can per-
form well in finding sign-representations with a low number of monomi-
als. To address this question, we focused on Deep Q-Networks (DQN)
and explored its applicability to the sign-representation problem. To be
concrete, we present our work on modeling RL agents for solving the sign-
representation problem and give our results on the application of DQN to
BFs with a low number of variables (n = 4). Our results indicate that
the trained DQN agent generalizes well and exploits intrinsic structure of
BFs, such as their equivalence in terms of certain equivalence relations.

1 Introduction

1.1 The sign representation of Boolean functions

An n-variable Boolean function (BF) can be represented by a unique multilin-
ear vector function with at most 2n terms i.e. monomial when ±1 is used to
represent True and False. The coefficients of the monomials can be easily found
by considering the BF and the coefficients as 2n-vectors of f and a respectively
with a = D−1f where D is a 2n×2n Sylvester-type Hadamard matrix [7]. D has
a recursive form and almost orthogonal with the property D−1 = 2−nD. The
coefficients of multilinear function representing the BF f is called the spectrum
of f . Consider the function g : {1,−1}n → R (g 6= 0), a BF f can be represented
also by f = sign(g). The coefficients of such functions that satisfy this relation
can still be found with the help the Sylvester-type Hadamard matrix by again
using the vector notation as follows:

aTg(k) = kTdiag(f)D : ∀ k > 0,k ∈ R
2n , (1)

533

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

where aT
g(k) indicates the coefficients of g induced by the selection of k. It is often

useful to define Qf = diag(f)D which is simply the Sylvester-type Hadamard
matrix whose rows are scaled by the function output [5]. It is easy to see that
given a k > 0, the coefficient of a monomial corresponding to column i, can be
found by aTi = kTQ∗,i (1 ≤ i ≤ 2n) where the f subscript is dropped for clarity.
In particular, the row-sum of Qf (i.e., 1TQ) is called the Walsh spectrum of f ,
denoted by w, which is 2n times the spectrum of f .

1.2 The minimum-term sign representing polynomial problem

The polynomial threshold function density (PTF density) of f is the minimum
number of monomials that can represent a given n-variable BF f . It is possible
to find the PTF density of f with an exhaustive search procedure. Let R be an
r-column subset of Qf , where Qf = diag(f)D (1 < r < 2n). Then the condition

kTR = 0 : ∀ k > 0,k ∈ R
2n (2)

guarantees that the PTF density of f is at most 2n − r since kTQf is a sign-
representation for f (due to Eq.1). Thus given an R we can ask a linear pro-
gramming solver to check whether a k > 0 satisfying 2 exists. The minimum
term sign representing polynomial then can be found by iterating over all possi-
ble r-column (1 < r < 2n) subsets of Q and returning the maximum of r that is
satisfiable[8]. However, this algorithm is super-exponential in n, thus heuristics
can be used reduce the r-iteration and still find sufficiently short (i.e. with low
number of terms) sign-representation [6]).

1.3 The equivalence classes of sign representing polynomials

Considering a sign-representing polynomial p(x1, x2, . . . , xn), it is easy to see
that the transformations of negation and permutation of input variables, as well
as negating the polynomial itself would not change the number of terms in the
new polynomial. Similarly, the multiplication of p or any of the input variables
with an arbitrary monomial of x1, x2, . . . , xn would not change the number of
terms in the new polynomial formed. Thus, all the BFs that can be transformed
to each other with any combination of these five operations can be considered
equivalent in the sense that they must have the same PTF density. The set
of all BFs that can be converted to each other in this way forms so-called an
equivalence class [2, 6]. Therefore, in the quest for the PTF density of all BFs,
we can focus only on one BF from each equivalence class. A convenient way
to label BFs is to associate them with integers in the range of 0 to 22

n

and
use hexadecimal notation to refer to BFs. We adopt the labeling used in [6]
that associates f with the binary number (1 − f)/2. According to this, for
example, f = [−1, 1,−1, 1,−1, 1,−1, 1] is represented with 0xaa in hexadecimal
(10101010 in binary). There are only 8 equivalent classes in the space of 4-
variable BFs making n = 4 an ideal place to explore algorithms for the low
number of monomial sign-representations.

534

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

2 Reinforcement Learning for finding sign-representations

Reinforcement learning (RL) aims to equip an agent with optimal policy based
on active interaction with an environment that provides a scalar feedback in
terms of a reward signal. The agent learns by exploration and by making use
of the reward function. In this study, we adopted DQN, an RL method that
is based on Q-learning [4], where the state-action value table (i.e., the Q table)
is approximated by a deep neural network. Successful applications of DQN on
combinatorial search problems such as Minimum Vertex Cover, Maximum Cut,
and Traveling Salesman problem ([3], [1]) have motivated us to adopt DQN.

2.1 The RL setup for finding short sign-representations

An RL agent operates on a state space S, with an action set A. In the deter-
ministic case, the environment is modeled with a transition function T (s, a) :
S ×A → S and a reward function R(s, a) : S ×A → R. Thus we need to define
these entities within the sign-representation framework.

2.1.1 State, Action, Transition function and Reward definitions

State space (S): The state-space S contains the triplets of the Walsh spec-
trum of the BF under consideration (w), an indicator vector representing the
monomials selected for elimination (c), and the number of monomials that can
be eliminated with c (m) :

s = [w, c,m] : ∀ ci ∈ {0, 1}, ci ∈ c (3)

Walsh spectrum is part of the state, as DQN agent must be able to operate on
multiple BFs, and thus it must know which BF it is operating on. The indexes
i : ci = 1 determine the column subset R of Q to be tested for feasibility in the
sense of Eq.2. For notational convenience we use sw, sc and sm to indicate the
components of the state s.
Action space (A): The action space is given by A = {a : a ∈ Z, 1 ≤ a ≤ 2n}.
An action indicates which monomial to be added to the current elimination set
(defined with c in the current state).
Transition function (T): After an action, a, is issued by the agent, the en-
vironment responds by creating a new elimination set by adding the indicated
monomial to the set (i.e. c′ = c, followed by c′a = 1). Then, the feasibility of this
elimination set is checked (Eq.2) with the linear programming solver. According
to the response of the solver, the state of the agent is updated as s′ = [w, c′,m′],
where m′ indicates the number of monomials that can be zeroed (i.e. the num-
ber of 1s in the c, it will increase if the current elimination set can indeed be
eliminated).
Reward function (R): The reward function awards the agent if it finds more
monomials for elimination than the previous state:

R(s, a) =

{

(s′m)2 s′m > sm where s′ = T (s, a)

0 otherwise
(4)

535

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

2.2 The scope of the experiments

We conducted our experiments on 4-variable BFs. Two types of experiments
were designed: in the first, we compared the DQN agent with random subset
selecting agents (Randv) by comparing the monomial elimination performances.
Randv agents are random action agents taking actions in the sense of the RL
agent defined above. The v subscript indicates that the agent is allowed to run
v times to increase its chance of finding low-monomial solutions. Each trial of
the Randv agent ends when it faces an unfeasible c (Eq. 3). The c which has
the maximum number of 1s (i.e. the maximum number of monomials for the
elimination) is used as the performance of the Randv agent for the benchmark.
In the second experiment type, we measured the equivalence class generalization
performance of the DQN agent by designing the training set as not to include
BFs from a selected equivalence class.

2.3 The results of the experiments

The PTF density of all the 4-variable BF is known [6], thus the maximum
number of monomials that can be eliminated when representing a BF f is known.
Denoting this maximum for a BF f as zfmax, and the number of eliminated

monomials by an agent is zfagent, then the performance metric for an n-variable

BF f , pf , can be defined with pf = zfagent/z
f
max (2n > zfmax ≥ zfagent ≥ 0). For

testing the performance of the agents, we separated the set of all 4-variable BFs
into test and training sets. We calculated the performances of the agents for
each BF. Then, we computed the average performance for both sets.

2.3.1 Benchmark of the DQN agent against Randv agents

The 75% of all functions in 4 dimension (49152 out of 65536) are uniformly
randomly selected and set as the training set; the rest is set as the test set. We
used the same training and test sets for the DQN agent and Randv agents. To
account for the stochasticity in Randv agents the experiments are repeated 10
times and the average is reported.

Rand1 Rand10 DQNworst Rand15 DQNbest

0

0.2

0.4

0.6

0.8

1

0.53

0.81 0.82 0.85 0.87

0.53

0.81 0.82
0.85 0.87

P
er
fo
rm

a
n
ce

Training Test

Fig. 1: The monomial elimination performances of the DQN and Randv agents

536

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

For the DQN results, we conducted 6 training sessions. The worst DQN agent
obtained is found to be better than the Rand1 and Rand10. The best DQN
agent outperforms the Rand1, Rand10, and Rand15 agents (Fig. 1). If v is large
enough, Randv agent will outperform the DQN agents, obviously. In addition to
this general performance comparison, we deepened the analysis by investigating
how the agents perform with respect to individual equivalence classes. For this,
we grouped the BFs in the training and test sets by their equivalence classes and
calculated their performance averages as shown in Table 1.

Equiv. Class # Functions DQN-train DQN-test Rand1-test Rand1-train Rand15-train Rand15-test

0xaa55 32 0.69± 0.14 0.72± 0.06 0.47± 0.3 0.47± 0.28 0.93± 0.06 0.93± 0.06

0xab55 512 0.96± 0.09 0.96± 0.06 0.62± 0.32 0.61± 0.33 0.99± 0.02 0.99± 0.02

0xbb55 3840 0.82± 0.15 0.82± 0.15 0.51± 0.24 0.51± 0.24 0.89± 0.08 0.89± 0.08

0xaba5 17920 0.92± 0.14 0.92± 0.14 0.54± 0.21 0.54± 0.21 0.91± 0.09 0.91± 0.09

0xaaff 1120 0.82± 0.09 0.82± 0.1 0.44± 0.22 0.45± 0.22 0.84± 0.1 0.84± 0.1

0xaba4 26880 0.88± 0.16 0.87± 0.16 0.52± 0.17 0.52± 0.17 0.83± 0.1 0.83± 0.1

0xab12 14336 0.83± 0.21 0.82± 0.21 0.52± 0.13 0.51± 0.13 0.76± 0.09 0.76± 0.09

0xac90 896 0.81± 0.14 0.82± 0.14 0.78± 0.14 0.78± 0.15 0.99± 0.04 0.99± 0.04

Table 1: DQN agent equivalence class based statistics

The results indicate that Rand15 is better than the DQN agent for some of the
equivalence classes. However, the DQN agent’s overall performance is better. In
particular, the DQN agent performs better for the equivalence classes denoted
by 0xaba5, 0xaba4, and 0xab12. These classes dominate the function space as
they makeup of 90% of all the 4-variable BFs. So, this means DQN experience
more of these types of functions, and thus gains better knowledge about them.
Consequently, we may expect it to perform better on these functions as explo-
ration is key for RL. As expected DQN agent is superior to the Rand1 which has
only one shot at getting a right subset. However, still, interestingly the Rand1
agent performs closely on one equivalence class (0xac90). Functions in this class
are bent functions. They seem to have the maximum PTF density among all
other BFs [6]. In fact, the Rand15 agent could find the maximum possible for
almost all bent functions. These findings indicate that a large number of subsets
can be eliminated when bent functions are considered, as evidenced by the fact
that random agents can find such subsets in relatively few trials.

2.3.2 Equivalence class generalization of the DQN agent

An interesting question is how well the DQN agent performs on the BFs from
an equivalence class it has never experienced during its learning. To answer
this question we design the training set so as to include all functions from an
equivalence class except the one equivalence class that we wish to check for
generalization performance. Thus the test set is composed of only functions
from one equivalence class function that are not included in the training set.
Consequently, we conducted 8 training and test sessions in total as there are 8
equivalence classes in the space of 4-variable BFs. Although there are variations
in the generalization performance depending on the selected equivalence class,
overall, the results show the DQN agent can build a policy that allows it to

537

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

select monomials for minimization for unseen BFs from an unseen equivalence
class (Table 2).

Equiv. Class Walsh spec. summary DQN performance on Train DQN performance on Test

0xaa55 1x16, 15x0 0.66± 0.169 0.638± 0.194

0xab55 1x14, 15x2 0.915± 0.15 0.92± 0.172

0xbb55 1x12, 7x4, 8x0 0.809± 0.178 0.823± 0.152

0xaba5 1x10, 3x6, 12x2 0.899± 0.154 0.889± 0.186

0xaaff 4x8, 12x0 0.812± 0.152 0.688± 0.228

0xaba4 2x8, 8x4, 6x0 0.842± 0.179 0.732± 0.187

0xab12 6x6, 10x2 0.8± 0.207 0.652± 0.169

0xac90 16x4 0.782± 0.146 0.758± 0.136

Table 2: Test performance indicate performance for equivalence classes in Column 1.

3 Conclusion

The current report focuses on the question: can reinforcement learning help
us solve and better understand the minimum term sign representing polynomial
problem. The results found are promising. Our experiments show that the DQN
agents do not overfit and generalize the solutions for the BFs that are not present
in the training phase. Moreover, the other performance criterion addressed, i.e.,
the equivalence class generalization performance shows that a DQN agent can
extract the minimization pattern of an equivalence class from the minimization
pattern information of the others. This is a surprisingly good generalization
performance. The ongoing work is underway addressing 5 and 6 variable BFs.
The future work will address the utilization of the knowledge discovered by RL
agents (in terms of neural network weights) for a better understanding of the
nature of BF sign-representation.

References

[1] Barrett et al, Exploratory Combinatorial Optimization with Reinforcement Learning,
CoRR, abs/1909.04063, 2019

[2] C. R. Edwards, The Application of the Rademacher-Walsh Transform to Boolean Function
Classification and Threshold Logic Synthesis, in IEEE Transactions on Computers, vol.
C-24, no. 1, pp. 48-62, Jan. 1975

[3] Dai et al, Learning Combinatorial Optimization Algorithms over Graphs, CoRR,
abs/1704.01665, 2017

[4] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra D. and Ried-
miller M. A., Playing Atari with Deep Reinforcement Learning, CoRR, abs/1312.5602,
2013

[5] Oztop, E., Sign-representation of Boolean functions using a small number of monomials.
Neural Networks, 22(7):938-948, Elsevier, 2009

[6] Sezener, CE, Oztop. E. Minimal Sign Representation of Boolean Functions: Algorithms
and Exact Results for Low Dimensions, Neural Computation 27(8): 1796-1823, 2015.

[7] Siu, K. Y., V. Roychowdhury and T. Kailath. Discrete Neural Computation. Englewood
Cliffs, NJ, Prentice Hall, 1995.

[8] Yapar, O., Oztop, E., On the Co-absence of Input Terms in Higher Order Neuron Rep-
resentation of Boolean Functions. In Cong, F., Leung, A., Wei, Q., editors, proceedings
of the 14th International Symposium on Neural Networks (ISNN 2017). Lecture Notes in
Computer Science 10262, pages 362-370, Springer, 2017.

538

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

