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Abstract. Explanation methods are considered the most prominent
way of achieving the ubiquitous requirement of transparency. Ideally, in
order to be useful, explanations should be “easy to understand” – i.e.
being of low complexity. In this work, we empirically study explanations
generated by Zorro, an explanation method for Graph Neural Networks.
In the context of a standard reinforcement learning scenario, we propose
a methodology to improve the quality of generated explanations in case of
sparse observations.

1 Introduction

The ubiquitous requirement of transparency of machine learning (ML) based sys-
tems is usually realized by providing explanations of system’s behavior. Nowa-
days, there exist a wide variety of different explanation methodologies for ML
systems [1]. Also, for the relatively new Graph Neural Networks (GNNs), expla-
nation methods have been developed, although these are still not as far developed
as those for classic ML systems [2]. In order to be useful, an explanation should
be of low-complexity – i.e. “easy to understand”. Therefore it must balance be-
tween showing enough information but not too much. In this work, we consider
explanations generated by Zorro [3], an explanation method for Graph Neural
Networks. Our experiment shows that Zorro relies on the amount of informa-
tion presented in its input. Sparse inputs cause Zorro to yield non-meaningful
explanations. We therefore propose to substitute sparse inputs with dense proxy
data. We evaluate our method on a standard reinforcement learning scenario,
with sparse observations, where the policy is realized using a GNN.

2 Background

Reinforcement Learning. In reinforcement learning an agent interacts with an
environment E by selecting appropriate actions a from an action set A for states
s ∈ E [4]. Numerical rewards ri, obtained for each chosen action, allow to assess
the behavior of the agent via the expected discounted return Gt =

∑∞
k=0 γ

krt+k+1

with γ ∈ [0, 1[ [4]. This measure, however, indirectly depends on the agent’s
policy π(a|s) which represents a conditional random distribution over the action
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space. Eπ[Gt | st = s, at = a] yields the action-value function qπ(s, a) [4]. Mnih
et al. introduced the algorithm “deep Q-learning with experience replay” to
estimate qπ(s, a) with a deep Q-network Q(s, a; θ) ≈ qπ(s, a) in [5]. Training the
network improves the agent’s policy. In essence, the sequence of loss functions
Li(θi) = E(st,at)∼ρ

[
(yi −Q(st, at; θi))

2
]
with yi = rt+1+γ maxa′Q(st+1, a

′; θi−1)
is minimized via batch gradient descent with data from the replay memory. This
data set stores experience tuples that are collected by the agent. Van Hasselt
[6] pointed out that Q-Learning and therefore deep Q-Learning overestimates
qπ(s, a)-values due to using only a single estimator. This significantly disrupts
the training [4, 6]. Decoupling the action selection from the action’s evaluation
counteracts this issue [6]. Hence, in deep Q-learning we adjust the original yi to
yi = rt+1 + γ Q(st+1, argmaxa′Q(st+1, a

′; θ(1)); θ(2)).

Graph Convolutional Neural Networks. In this work we consider the graph con-
volutional neural networks (GCNs) which were introduced by Kipf and Welling
in [7]. GCNs compute node-wise feature embeddings by propagating weighted
messages among immediate neighbors H l+1 = σ

(
D−1/2(A+ 1)D−1/2H lW l

)
.

This propagation rule was derived by approximating spectral graph convolu-
tions with first-order Chebyshev polynomials [7, 8]. For an in-depth derivation
we refer to [7] and [9].

Zorro. Zorro [3] yields a post-hoc, instance-level explanation algorithm for
graph neural networks. It uses a rate-distortion framework to compute discrete
masks which are supposed to explain node-level predictions. The algorithm
searches in a pre-defined sub-graph around the target node for important nodes
and node features. Those are marked in a discrete matrix M , i.e. the mask for
which holds Mij = 1 iff node i and feature j are included in the explanation, else
Mij = 0. Let X be the original feature matrix of the given graph and R a distri-
bution over the feature space. Multiple YM = X⊙M+Z⊙(1−M) are computed
with differently sampled Z ∼ R. Predictions of each YM are computed with the
given graph neural network. Let m be the amount of all computed YM and n
the amount of predictions of YM which match the prediction of X. The fidelity
F(M) = n/m measures the quality of M . Overall, Zorro greedily computes a
set of disjoint explanations S = {M1,M2, ... | ∀i : F (Mi) ≥ τ, ∩iMi = ∅} which
yield a fidelity higher than a given threshold fidelity τ .

3 Case Study

3.1 Setup

We empirically evaluate our contribution by training a RL-agent on the Taxi-v3
OpenAI-Gym environment [10, 11]. In the Taxi-v3 environment a taxi has to
move through a (5×5)-grid in order to pick-up a passenger, subsequently moving
to- and eventually drop the passenger on a destination location. The default
observations are given as integers. We convert those to graphs. In practice, the
graph is represented with a binary feature matrix F ∈ N25×4 and an adjacency
matrix A ∈ N25×25. All possible transitions in the environment are represented
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Fig. 1: [very left] taxi and passenger (picked up) located in node 5, destina-
tion on node 23 [left] proxy with feature vectors holding probabilities of the
occurrence of each feature displayed in RGBA-encoding [right] Zorro applied
on observation [very right] Zorro applied on proxy

as edges in the graph which never change. Each node is associated to a four-
dimensional binary feature vector. The dimensions are described in Table 1.

Dim. Meaning

0. taxi located in this node
1. passenger located in this node
2. destination located in this node

3.
taxi and the passenger located
in this node & passenger picked
up by the taxi

Table 1: Feature vector

An entry is one if the corresponding attribute
holds, otherwise zero. Dimensions zero and
one are zero if dimension three is one. Note
that the feature matrix has a total of 100 en-
tries but at most three have a value differ-
ent from zero. That is, we deem the obser-
vations to be sparse. An illustration of this
observation-encoding is given in Fig. 1 on
the very left. We use double deep Q-learning
in order to train the agent on the modified

environment. The deep Q-network we use is illustrated in the upper branch of
the graph neural network represented in Fig. 2. It computes a graph embedding
with general graph convolutions [12], reduces the amount of nodes to one via
differential pooling [13] and predicts Q-values for the feature vector of the re-
maining node. Eventually, the index of the largest Q-value represents the chosen
action. We use Zorro [3] to seek explanations for remaining node’s classification.
The code for this experiment will be made public1 after publication.

3.2 Applying Zorro on Sparse Data

In order to illustrate what regions of the observations are of particular interest for
the agent we apply Zorro on the observation. As the hyper-parameters of Zorro
we choose τ = 0.7 and compute F(M) considering 300 sampled random matrices

Z per M . If Zorro’s result set S holds a subset S̃ that contains masks for which

the predictions match the original prediction, we select thatM ∈ S̃ which has the
highest fidelity Eq.(2) to increase sparsity as a means to improve interpretability.

If S̃ = ∅, we select that M ∈ S with lowest fidelity in S. The final explanation
EX for an observationX is given by the Hadamard product EX = X⊙M (“Zorro
Observation” in Fig. 1). We evaluate the obtained explanations by considering
the following three evaluation metrics:

1https://github.com/andreasMazur/ImprovedGNNExplanations
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Fig. 2: The network architecture used throughout this work. The upper branch
illustrates the network used to determine actions, the lower is used to compute
proxies.

Metric 1 (Sparsity) Let Y ∈ Rm×n be a feature matrix or an explanation and
yij an entry in Y . We calculate the sparsity of Y as follows:

sparsity(Y ) =

∣∣{yij | i ∈ {1, ...,m}, j ∈ {1, ..., n}, yij = 0}
∣∣

m · n
(1)

Metric 2 (Fidelity) In order to understand how similar a deep Q-network Φ
assesses the explanation EX to its observation X, we consider the mean-squared-

error between Q-values Φ(X) = q⃗ and Φ(EX) = ˆ⃗q as the fidelity of EX :

MSE(q⃗, ˆ⃗q) =
1

n

n−1∑
i=0

(qi − q̂i)
2 (2)

Metric 3 (Prediction Accuracy) Let Φ be the deep Q-network, Xi a feature
matrix of an observation and EXi the explanation of Xi. We compute the pre-
diction accuracy as follows:

acc
(
{(Xi, EXi

)}i=1...k

)
=

∣∣{EXi | argmaxΦ(EXi) = argmaxΦ(Xi)}
∣∣

k
(3)

It turns out that for 1101 observations, which we have considered during this
work, the most prominent target action (“move south”) appears 303 times. A
baseline agent predicting “move south” for every observation would have an ac-
curacy of ≈ 0.275.

After computing the explanations (orange data in Fig. 3) we measured an average
explanation sparsity of 0.983, a mean fidelity of 20.522 and a prediction accuracy
of 0.64. However, we recognized that a lot of explanations were either entirely
equal to the original observation (519 times) or completely empty (80 times).
That leaves us 502 valid explanations. Hence, we have explanations for only
about ≈ 46% of all observations. While the explanation sparsity does not change
significantly when leaving out the faulty explanations, the prediction accuracy
drops to 0.092. This is worse then the baseline agent. Considering the poor
performance and the fact that a lot of explanations cannot be considered valid
stresses Zorro’s problem with sparse data. This issue is addressed in the following
section.

530

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



3.3 Predicting Dense Proxy Data

Since Zorro has difficulties dealing with sparse input data we propose to substi-
tute the sparse original data with data the deep Q-network interprets similar to
the original observations. We extend the deep Q-network architecture we used
so far by connecting a new branch, called proxy branch, to the feature embed-
ding layer as illustrated by the lower branch in Fig. 2. The proxy branch shall
compute dense proxy data which we use as replacements for the original input
observations (therefore the notion “proxy”). That is, the branch’s output is a
matrix with the same dimensions as the feature matrix from the observations.
It contains floating point values in range zero to one, which can be interpreted
as probabilities for the occurrence of a particular feature in a considered node.
The Q-values predicted for the proxy inputs shall be similar to the Q-values pre-
dicted for the original feature matrix. Therefore, we use the MSE between the
observation Q-values and the proxy Q-values as the loss function Eq. (2). During
the training we freeze all weights in the deep Q-network besides the weights of
the proxy branch. We can compare the proxy data to the previously computed
explanations (green data in Fig. 3) by computing the evaluation metrics. We
measured a mean sparsity of 0.037, a mean fidelity of 0.824 and a prediction ac-
curacy of 0.763. Although the proxy inputs largely improve the fidelity and the
prediction accuracy compared to Zorro’s explanations for sparse observations,
we cannot consider them as good explanations as their high density makes it
very difficult to fell meaningful interpretations (”Proxy” in Fig. 1).

3.4 Applying Zorro on Proxy Data

Fig. 3: For each observation in a given
set of 1101 observations a proxy and two
explanations, i.e. Zorro applied on ob-
servation and proxy, were computed.

In order to improve the sparsity we
apply Zorro on the proxy data in the
same manner as we did for the sparse
observations in Section 3.2. As vis-
ible in Fig. 1 on the very right, ap-
plying Zorro on proxy data can yield
explanations which distinguish from
the previous explanations by balanc-
ing sparsity and information richness.
When applying Zorro on the proxy
data it benefits from a larger pool
of selectable nodes and features since
more nodes have feature vectors dif-
ferent from a zero vector in contrast
to the original observation. Hence,
it is not prone to mask too much or
nothing unlike the first test series as
reflected by the blue data in Fig. 3. Calculating the evaluation metrics for those
explanations, we witness a mean sparsity of 0.444, a mean fidelity of 28.326 and
a prediction accuracy of 0.41. That is, these explanations are not too dense like
the proxy data and not too sparse like Zorro’s explanations for the observations.
Additionally, compared to the previous explanations the prediction accuracy im-
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proved by more than four times and therefore also outperforming the baseline
agent.

4 Conclusion

Proxy data resembles original observations up to their fidelity while being a lot
more dense, therefore representing reasonable substitutes. Zorro applied onto
proxy data therefore benefits from a large pool of selectable nodes and features,
making it less prone to mask too much or no information at all. The values given
by our evaluation metrics emphasize that. We measured matrix sparsity values
for proxy explanations which are not vanishingly low, compared to plain proxy
data, or immoderately high, like Zorro’s explanations for sparse observations, but
rather values which are in a reasonable mid-range. Additionally, the prediction
accuracy for proxy explanations is vastly better than the prediction accuracy
for explanations of sparse observations. Considering all these findings, we deem
Zorro’s explanations for dense proxy data to be improved compared to Zorro’s
explanations for sparse observations.
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