
Embedding-based next song recommendation for
playlists

Raphaël Romero1 and Tijl De Bie1

1- Ghent University - Department of Electrical Engineering
Technologiepark-Zwijnaarde 126, 9052 Gent - Belgium

Abstract. In recent years, music storage and consumption has shifted
massively to digital platforms, where large-scale libraries of songs are
stored along with their metadata. As a byproduct of this transforma-
tion, music is increasingly being organized and accessed in the form of
playlists. User-curated playlists have become massively available online,
and the challenge of automatically generating playlists has gained pop-
ularity in the music information retrieval community. In this paper, we
build on link prediction for graphs to propose a flexible music playlist gen-
eration method. We transform a playlist dataset into a weighted graph
of songs and posit a Poisson model on the count of transitions between
songs, where the rate is modulated by the euclidean distance between song
embeddings. Our method yields prediction results superior to common de-
terministic baselines, suggesting that the learned embeddings can be used
to derive a meaningful notion of song similarity.

1 Introduction

Playlists are omnipresent on streaming platforms nowadays, and represent a
unique source of data for learning similarities between songs in music databases.
Thus, their empirical study has lead to a substantial body of work in the Music
Information Retrieval (MIR) community. A full survey on the different types of
playlists and challenges in playlist modelling is provided in [1].

Among these various challenges, next-song recommendations consists in scor-
ing each potential next songs given a set of seed songs, or playlist history. Naive
approaches include for instance scoring the next songs purely based on their pop-
ularity in the training set, or based on the similarity of their meta-data and those
of the seed songs. While these two methods already yield superior performances
than random prediction, the former doesn’t enable discovering new/unknown
tracks, while the latter would most likely create playlists with limited diversity.

To cope with these limitations, we argue that the notion of score depends
heavily on the considered dataset, and that it can be learned from a history of
user-curated playlists. To achieve this, we propose to rely on the (multi)graph
formed by the transitions between songs in a playlist dataset to further generate
vector representations of the songs. The song similarities can then be measured
through the Euclidean distance between their latent representations.

503

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Contributions We cast the next song prediction into a weighted graph embed-
ding based link prediction problem. We generalize a graph embedding method
designed originally for unweighted graphs, and apply it to the next-song recom-
mendation task on playlists. Furthermore, we evaluate our method compared
to effective deterministic baselines, with results suggesting that our embeddings
are able to learn meaningful songs representations.

Related Work Playlist prediction is a popular topic in the MIR community.
For instance playlist continuation has been the subject of a recent challenge [2].
Moreover, modelling playlists as random walks on graphs is an already popular
approach studied for instance in [3] or [4]. Similar to our approach, the latter is
an example of an approach relying on a notion of distance in a latent space to
define the song similarities. However, to our knowledge none of these previous
approaches directly embed the weighted transition count graph to generate song
representations.

Outline In section 2 we introduce the problem setting and our method to solve
it. In section 3 we describe our evaluation setup and discuss the results.

2 Problem statement and proposed method

In this section we introduce formally the next-song recommendation problem,
and present our approach, based on a weighted graph connecting the songs in
the database based on number of transitions between each song pair in a training
dataset.

2.1 Playlist prediction

As there are many ways to define the challenge of playlist prediction, in this
section we describe the specific problem of next song prediction.

Let S be a set of songs, indexed for instance by integers. We define a playlist
as an ordered set of songs p = (s1, ..., sK), where K is the length of the playlist
and sj ∈ S are songs. A playlist dataset is a collection of N playlists: D =
(p1,..., pN). The task we wish to solve is defined as follows. For each playlist
p = (s1, ..., sK), we wish to predict the k− th song of the playlist given the k−1
first songs. We suppose that each song sk is chosen among a set of candidate
songs C(s1:k−1) that depends on the history s1:k−1. Then we define our next
song prediction task as a ranking task, where each song s ∈ C(s1:k−1) is ranked
given the history based on a score f(s; s1:k−1).

2.2 From playlist data to a weighted song graph

In order to derive a song similarity based on the playlists, we calculate a multi-
graph of songs, where each song is represented by a node, and two given nodes
form a link every time a transition between them appears in the training set. We
define the adjacency matrix W = (wij) of this graph as the symmetric matrix

504

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

such that for two songs i and j, wij is the number of transitions between i and
j.

2.3 Our method: encoding the latent structure of the song graph
into embeddings

In the following we propose a latent variable model for the transition counts,
and describe our approach to solve for the maximum-likelihood estimates of
these latent variables.

2.3.1 Weighted Graph embedding

Network embedding, also known as graph representation learning, is a class of
methods for mapping the nodes in a graph to a Euclidean space, such that the
vector representations of the nodes reflect structural properties of the graph.

Recently, a probabilistic approach for graph embedding has been proposed
[5]. In this framework, the Bernoulli probability for a node pair (i, j) of being
connected is modelled as a decreasing function of the distance between their
associated vector representations. As a consequence, maximizing the likelihood
of an observed graph with respect to the embeddings will enforce similar songs
to have nearby embeddings in the latent space. Furthermore, this framework
allows including prior information about the topology of the graph, in order to
factor out this information from the learned embeddings.

While the existing method doesn’t generalize flexibly to weighted cases, here
we adapt this method by modelling the weights between pairs of nodes indepen-
dently as Poisson distributed, with rate parameters expressed as a decreasing
function of the distance between their corresponding embeddings.

Mathematically, for two nodes i and j we suppose that the number of tran-
sitions between them, wij is distributed as:

wij ∼ Poisson(λij)

λij = exp(bij − d(zi, zj))
(1)

where zi,zj are respectively the embeddings of song i and song j, bij is a
pair-wise bias term and d(zi, zj) is the Euclidean distance between them.

The bias term bij can be used to incorporate prior notions of similarity be-
tween the songs, such that this information needs not be reflected in the Eu-
clidean distance between the latent embeddings.

Remark While we present a simple undirected version of our model, other vari-
ants can be proposed. For instance the Poisson distribution proposed here for
pairwise count data can be replaced by any exponential family of distribution,
in order to model pairwise response variable defined in other domains. The
exponential non-linearity/ activation function used here, can also be modified
accordingly depending on the type of data and distribution. Finally, the di-
rectionality of the playlists can be modelled by duplicating the embeddings, in
order to obtain an asymmetric array of parameters such that λij 6= λji.

505

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

2.3.2 Parameter estimation

As our goal is to use the above model mainly for prediction, we propose to solve
for the Maximum Likelihood estimates of the latent variables (zi)i∈S , without
considering the level of uncertainty of the estimates. This yields an uncon-
strained, non-convex optimization problem where the loss function is given by
the negative log-likelihood of the model 1 and writes (using the same notations):

L(z) =
∑
i6=j

λij − wij log(λij)

To circumvent the O(|S|2) complexity required to evaluate this loss function,
we propose to approximate it by sub-sampling for each positive edge a number
ρ of negative edges:

L(z) ≈
∑
i

∑
j∈N(i)∪Ñ(i)

λij − wij log(λij).

Where for each node i, N(i) denotes its set of neighbors, N̄(i) ⊂ S\N(i) denotes
a randomly sampled set of negative neighbors, of size|N(i)| × ρ, where ρ is the
negative/positive sample ration. To solve that optimization problem we use
the Adam algorithm [6] with a learning rate of 10−2. At each iteration of the
algorithm, we resample a set of negative neighbors for each node.

3 Evaluation

In other to assess the suitability of the proposed graph embedding method for
the specific problem of next-song prediction, in this section we introduce our
evaluation setup. Then we describe the results obtained on a real-world playlist
dataset.

3.1 Data

We evaluate our approach on the Yes.com playlist dataset provided in the paper
[4]. The distribution of popularities of the songs in the dataset as well as the
distribution of playlist lengths are shown in figure 1. In our experiments we use
the full training set of 41480 playlists as a training set, and randomly sample a
set of 500 playlists among the 389728 provided, to use as a test set.

3.2 Baseline methods

We describe several baseline methods used in our experiments. The Popularity
(Pop) baseline just ranks the possible next songs according to their number
of occurrences in the train playlists. The Co-occurrence (Cooc) ranks the
possible next song according to their number of co-occurrences with the current

506

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

(a) Log-log plot of the song occurrences (b) Distribution of the playlist lengths

Fig. 1: Statistics of the Yes.com dataset

song in the train playlist. The Meta-Data (MetaData) baseline ranks the
possible next songs based on the Jaccard index of their set of tags and the ones
from the current song. We compare all these baselines to our proposed Poisson
Embedding (PoissonEmb) method.

3.3 Results and Discussion

Method Pop Cooc MetaData PoissonEmb
MRR 0.547± 0.017 0.730± 0.013 0.536± 0.013 0.815± 0.007

Recall@5 0.745± 0.015 0.747± 0.014 0.731± 0.016 0.979± 0.003

Table 1: Results

To evaluate our method, we adapt the evaluation procedure proposed in [7].
Let’s consider a test playlist (s1, ..., sK). For each transition sk−1 → sk in the
playlist we calculate a set of candidate songs, denoted C(s1:k−1), such that the
true next song sk is in C(s1:k−1). Next we compute a score f(s′; s1:k−1) for each
candidate song s′ ∈ C(s1:k−1), base on the different methods. Finally, we rank
the true next song sk based on this obtained list of scores. To form the set of
candidate songs, we propose to use C(s1:k−1) = {sk} ∪ C ′, where C ′ is a set of
songs of fixed size Ncandidates, sampled at random among the songs not in s1:k−1
(i.e. not featured yet in the playlist).

Based on the obtained list of ranks we report two metrics, namely the mean
reciprocal rank (MRR), and the recall at K (Recall@K) defined as the proportion
of ranks that are below K. In our experiments we use 10 negative candidate songs
for each transition and report the recall with K=5.

507

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

For our proposed Poisson embedding method, we used 8-dimensional em-
beddings, and train the model by using 1 negative neighbor per positive ones.
Moreover, as ranking only depends on the set of euclidean distances between the
embeddings, we set all the bias terms to zero.

As the test score is stochastic due to the presence of random candidates, we
repeat the evaluation 10 times and report the mean and variance of the metrics.
The results are shown in table 1. Among the baselines, we can see that just using
the co-occurrence already allows to recover a large portion of the next songs into
the top 5. Moreover, the Meta-Data-based baseline does not perform better than
the Popularity, confirming a systematic bias of playlists towards popular songs.
However, our proposed method yields superior results that these deterministic
baselines, suggesting that the learned embeddings are successful in learning an
abstract notion of song similarity.

4 Conclusion

In the present work we have proposed a graph embedding based method to learn
song similarities based purely on a history of user-curated playlists. While con-
ceptually simple and flexible, this method allows learning a similarity function
that perform better than common baselines in our offline next song prediction
experiments. While in our approach, the playlist dataset is first summarized
into a transition count graph, other summarizing statistics could be considered,
while modifying the exponential family in the model 1 accordingly, following
Generalized Linear Models routines.

References

[1] Geoffray Bonnin and Dietmar Jannach. Automated generation of music playlists: Survey
and experiments. ACM Computing Surveys, 47(2), 2014.

[2] Ching Wei Chen, Markus Schedl, Paul Lamere, and Hamed Zamani. Recsys challenge
2018: Automatic music playlist continuation. RecSys 2018 - 12th ACM Conference on
Recommender Systems, (1):527–528, 2018.

[3] Brian McFee and Gert Lanckriet. Hypergraph models of playlist dialects. Proceedings of
the 13th International Society for Music Information Retrieval Conference, ISMIR 2012,
(Ismir):343–348, 2012.

[4] Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten Joachims. Playlist prediction
via metric embedding. Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 714–722, 2012.

[5] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Conditional Network Embeddings. 7th Interna-
tional Conference on Learning Representations, ICLR 2019, may 2018.

[6] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 3rd
International Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings, pages 1–15, 2015.

[7] Andreu Vall, Massimo Quadrana, Markus Schedl, and Gerhard Widmer. Order, context
and popularity bias in next-song recommendations. International Journal of Multimedia
Information Retrieval, 8:101–113, 6 2019.

508

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

	Introduction
	Problem statement and proposed method
	Playlist prediction
	From playlist data to a weighted song graph
	Our method: encoding the latent structure of the song graph into embeddings
	Weighted Graph embedding
	Parameter estimation

	Evaluation
	Data
	Baseline methods
	Results and Discussion

	Conclusion

