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Abstract. A short introduction to the application of information-
theoretic and machine learning methods to biomolecular and medical data
is provided as the motivating material that supports special session ded-
icated to this topic at ESANN 2022. In particular, we highlight current
developments of foundation such as interpretability and model certainty.
Further, we emphasize how theoretic models provide a natural framework
to deal with heterogeneous and complex data structures as frequently oc-
curring in biomedical research.

1 Introduction

Methods of artificial intelligence (AI) and machine learning models in particular
increasingly contribute to critical advances in molecular medicine and biology,
as well as in other branches of bio-medical research, which all have to deal
with growing volume and variety of data to be processed and analyzed in an
integrated manner. These approaches comprise approaches for data visualiza-
tion, clustering, classification and (non-)linear regression as well as adaptive
rule-based deduction systems like decision trees, as alternatives to traditional
statistical methods.

As a matter of fact, data in medicine and biology often have complex struc-
tures , which raise a challenge to wrangling integrated representations. Moreover,
(dis-)similarity of objects or individuals are frequently determined by external
domain knowledge and respective heuristically motivated estimation procedures.
The resulting similarity relations generally do not satisfy rigorous properties of
(dis-)similarity measures defined in the mathematical or technical context [44].
For example, methods for alignment of protein sequences typically use substitu-
tion matrices, e.g. BLOSUM [29], with values for all possible exchanges of one
amino acid with another to determine a respective alignment score evaluating
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the similarity [45, 24]. In contrast, in epidemiology, psychology and psychother-
apy, participant evaluations and classifications are usually achieved answering
questionnaires [22, 41]. The contrast is even starker for digital pathology, , which
plays a critical role in cancer research, where the data wrangling focus is set on
analyzing and annotating images at scales ranging from cellular to whole tissues
in order to associate morphological features with patient classifications [17].

This special session at ESANN 2022 will rely on specific examples to high-
light methodological aspects that matter in the application of machine learning
methods to molecular biology and medicine. Although the information theory
discussion should be relevant to methods of machine learning in general, that
aspect of the discussion will assume the use of neural networks.

2 Machine Learning in Context of Medical and Biological
Applications

Currently, machine learning is largely dominated by deep learning [27] and,
hence, also molecular biology and medicine applications of machine learning
models are in the focus of deep learning methods [73, 72]. Those applications
range from bioinformatics and computational biology [2, 59], post-genomic biol-
ogy and personalized medicine [50], detection of bacterial colonies for the produc-
tion of vaccines [11] up to medical imaging [7], to name just a few. The possibility
of end-to-end learning of deep networks and the availability of pre-trained mod-
els for many application areas and in particular for image processing contribute
to the big success of those neural networks also in biology and medicine. For a
recent overview we refer to [4].

The main challenge of deep learning models is the absence or at least the
difficulty of interpretation [54, 8]. Yet, in medicine and bio-medical molecular
research in particular, the explanation of a trained model or the interpretability
by model design remains an important component of successful applications
[62, 6]. Similarly, assessing robustness and model confidence is an absolute
requirement to achieve reliable and statistically consistent classifications [58, 31].
According to [38], explainable artificial intelligence (XAI) approaches comprise
machine learning models which can be elaborated after training (post-hoc) by
sophisticated tools, simpler surrogate models and experts in the field whereas
interpretable artificial intelligence approaches comprise those models which are
interpretable by design (ante-hoc) also for application domain experts. Following
this work, the desidarata of explainable/interpretable models are

� explicitness and comprehensibility,

� faithfulness,

� stability,

� sparsity,

� transparency,

� model inspection,
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which should be accompanied in the field of bio-medical research by

� data privacy

due to ethical and social reasons [16, 42]. Thereby, there is evidence that inter-
pretable models should be preferred over explainable approaches [19, 52, 53, 75].
In particular, prototype-based machine learning models like supervised and un-
supervised vector quantization belong to this class of algorithms [36, 12]. Super-
vised vector quantization for classification learning originates from a Bayesian
perspective and has been coined as learning vector quantization (LVQ) [34]. The
respective mathematical theory is provided in [56] and leads to the verification
of robustness by means of implicit margin maximization during the classification
learning process [20, 55, 69, 46]. The margin can be calculated for a given data
also in the recall phase to evaluate the model decision confidence [32]. This
proofed robustness is certainly useful also in the context of outlier detection and
corresponding reject options for confident model predictions [9, 25, 28, 30, 61].

In medical applications, we frequently have to deal with imbalanced data
or, even more complicated, with the so-called problem of one-class-classification
(OCC), which is closely related to the reject problem [60, 47]. For example, this
is the case when limited data is available for a subset of patients suffering from
a particular disease. As a result, the representation of the target class for those
patients is obscured. This can cause all non-target data to be rejected and/or
counterfactuals have to be considered. Also for those problems, prototype-based
methods seem to open a promising perspective [3, 57]. An ensemble method
for outlier detection (and gene selection) for breast cancer data analysis was
reported in [40].

Another important task in biomedical machine learning to be mentioned
briefly here is the problem of heterogeneous and unstructured data. Respective
data fusion processes have to be applied to wrangling data into such a format that
machine learning algorithms can deal with them adequately [43]. For example,
graph kernels and graph embedding can reflect relations between complex data
objects while at the same time they can be handled efficiently in an appropriate
framework [51, 15].

Last but not least, the special session will seek to explore a range of applica-
tions of machine learning models in bio-medical research that are equipped with
evaluation measures and tools that assess the model certainty and confidence.
This aspect should be considered as an important task to improve the accep-
tance of artificial intelligence by the experts in the field together with the above
mentioned interpretability.

3 Information Theory and Data Representation in Con-
text of Medical and Biological Applications

Information theory and information theoretic concepts contribute to many sta-
tistical and machine learning tasks also in medicine and molecular biology and
provide a natural paradigm to process information [4, 5]. For example, the
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information theoretic perspective on medical diagnostic inference is considered
in [23] and its relevance for clinical diagnostic testing is investigated in [10],
whereas their applications in computational biology and quantitative genetics
are discussed in [18] and [26], respectively.

Considered broadly, one can distinguish foundational information theoretic
concepts for data proximity evaluation (potentially leading to distance metrics)
with statistical inference on the one hand and information theory based learning
concepts in machine learning applied for bio-molecular and medical data analysis
tasks on the other hand. The latter topic is explicitly addressed in [48, 49]. Yet,
(deep) multi-layer perceptrons with cross-entropy loss for classification can also
be seen as an information theoretic approach for consistent classification learn-
ing, For interpretable LVQ we may refer to the probabilistic variant proposed in
[63].

The utilization of information theoretic concepts for the investigation of the
origin of life was suggested in [74] and was successfully applied to distinguish
RNA-virus signatures from structured artificial sequences by means of their in-
formation content estimated by the Kolmogorov complexity as reported in [64].

In molecular sequence analysis, several concepts of information theory in-
spired and innovative sequence coding schemes were proposed such that the
transformed molecular sequence data can be compared and processed by machine
learning tools. In this field, the molecular sequences can be seen as sequences
over a finite alphabet of symbols (e.g. amino acids). The relevant approaches
frequently belong to the family of alignment-free methods, which entail a lower
computational cost than alignment-based methods [14]. Prominent examples
are the representation of DNA-sequences by means of the chaos game approach,
which was studied in [1, 68, 67, 66] constituting a bijective scale-free projection
of sequences to the continuous numeric space. Specifically, it provides a sequence
encoding procedure from which information profiles at multiple degrees (at any
L-tuple length) can be more effectively processed. Such a unifying information
domain comes with the promise of a comprehensive AI framework where, for
example, digital pathology and biomolecular data can share machine learning
methods.

The representation of sequences in protein analysis by so-called natural vec-
tors using a sequence description in terms of the higher moments of the sequence
alphabet elements with respect to their occurrences and co-occurrences provides
another method based on information-theoretic statistics for molecular sequence
encoding [71]. A generalization of this approach is the mutual information func-
tion [37], which can be used for efficient sequence comparison [13].

In this introduction to the special ESANN2022 session, the representation
of symbolic sequence data will be highlighted as a particular challenge, and also
as an opportunity, for the use of AI on genomics data.
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4 Conclusion and Outlook

In this short introductory and motivational paper we revisited and highlighted
some aspects of machine learning and the application of information theoretic
models and concepts in the context of medicine and molecular biology. In this
special session of ESANN2022, we will try to see beyond the methods that un-
derpin the tremendous recent success of deep learning, in order to explore the
promise of new approaches emerging in current research. Specifically, the com-
bination of information theoretic concepts as intuitive models with the design
of interpretable networks may offer new insights in machine learning and, fre-
quently in the context of medical and molecular-biologic research, has to deal
with complex data structures and incomplete information. That research con-
text especially values methods and concepts that are robust, transparent, and
information-preserving. Moreover, it is beneficial for the domain experts if
knowledge acquired by the model for decision making is provided to them as
users.

Finally, the expectation of interpretability/explainability is often com-
pounded with the requirement that the computational platforms advancing ma-
chine learning in biology and medicine can facilitate collaborations across fields
of expertise – preferably as experts in the loop [39] or/and by guided (visual)
inspections of the results [21], where (data-) privacy is absolutely critical. This
last aspect of the session is undergoing major advances with the development of
distributed learning systems, e.g. multi-source learning algorithms or federated
learning approaches [35, 65, 33, 70].
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[68] S. Vinga and J.S. Almeida. Local Rényi entropic profiles of dna sequences. BMC Bioin-
formatics, 8(393):1–19, 2007.
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