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Abstract. With the significant increase of interactions between individu-
als through numeric means, the clustering of vertex in graphs has become
a fundamental approach for analysing large and complex networks. We
propose here the deep latent position model (DeepLPM), an end-to-end
clustering approach which combines the widely used latent position model
(LPM) for network analysis with a graph convolutional network (GCN)
encoding strategy. Thus, DeepLPM can automatically assign each node
to its group without using any additional algorithms and better preserves
the network topology. Numerical experiments on simulated data and an
application on the Cora citation network are conducted to demonstrate its
effectiveness and interest in performing unsupervised clustering tasks.

1 Introduction and related work

Networks are employed in a wide range of applications, from social media and
email communications to protein-protein interactions, because they are simple
structures yet are capable of modeling complex systems. In this context, vertex
clustering is a key branch of clustering which attempts to partition the nodes of
the graph into different groups to extract patterns summarizing the data.

On the one hand, a long series of statistical methods have been developed to
discover the underlying features in networks. The stochastic block model [SBM,
1] is widely used to detect communities or more general clusters of nodes. Based
on SBM, many extensions looking for overlapping clusters have been proposed,
such as MMSBM [2] and OSBM [3]. On the other hand, a different approach
to model network data relies on latent position models (LPMs) [4]. Afterwards,
LPCM [5] was developed to incorporate a clustering structure into LPM. Never-
theless, these models have a challenging inference procedure that primarily relies
on MCMC and do not scale easily to large and complex networks.

From another aspect, deep learning based techniques have been intensively
investigated in clustering. In this line of methods, VGAE [6] adopts a graph
convolutional network [GCN, 7] encoder to produce nodes embeddings in the
latent space. By introducing adversarial learning into the generation process,
ARVGA [8] enforced the latent representation to match a prior distribution.
Lately, DGLFRM [9] combined OSBM with GCN by positing each node of the
graph to have an embedding modeled by a Beta-Bernoulli process. These ap-
proaches adopt a two-step clustering procedure, simply relying on external clus-
tering algorithms (e.g. k-means) to group the embedded nodes, independently
from the generative model. More recently, a self-training clustering module was
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developed as an alternative approach in DAEGC [10] that allows to jointly opti-
mize graph embeddings and clusters. All of the aforementioned methods employ
inner-product-based decoders, whereas we argue that a different solution, ac-
counting for the Euclidean distance between nodes in the latent space might be
more suited.

In order to overcome the limitations of the methods listed above, while ex-
ploring their benefits, we introduce the deep latent position model (DeepLPM),
allowing to simultaneously learn vertex representations and obtain node parti-
tions. By combining a GCN encoder with a LPM-based decoder, our model aims
at capturing the best of both worlds described so far: it is a flexible represen-
tation learning tool based on the deep learning architecture, yet comprehensive
and interpretable thanks to the statistical model considered.

2 Deep latent position model

Notations. In this work, networks are modeled as undirected, unweighted
graphs G = (V ;E) with N = |V | nodes. We introduce an N × N adjacency
matrix A, where Aij = 1 if there is a link between node i and node j, 0 oth-
erwise. The set of the edges E can be associated with an additional covariate
information, collected into the matrix Y ∈ R|E|×D. The generic entry of Y ,
denoted yij , is the D-dimensional feature associated with the edge connecting
i to j. For instance, yij could encode the text exchanged between users i and
j in a communication network. We aim to learn well-represented, latent, node
embeddings Z in a lower dimension P and to partition the nodes into K clusters.
Generative model. As in LPM, we assume that each node i, i = {1, · · · , N},
has an unknown position zi ∈ RP in a latent space. The probability of a link
between two nodes is modeled as a distance function between their latent po-
sitions. Our generative process is as follows. First, each node is assigned to a
cluster via a random variable ci encoding its cluster membership

ci
iid∼ M(1, π), with π ∈ [0, 1]K ,

K∑
k=1

πk = 1. (1)

Then, conditionally to its cluster, a latent embedding zi is generated

zi|(cik = 1) ∼ N (µk, σ
2
kIP ), with σ2

k ∈ R+∗, (2)

independently for each node. Finally, the probability of a connection between
nodes i and j is modeled through a Bernoulli random variable related to the
distance between latent positions

Aij |zi, zj ∼ B(fα,β(zi, zj)), (3)

with
fα,β(zi, zj) = σ(α+ βT yij − ||zi − zj ||2), (4)

where fα,β can be seen as a decoding, one-layer, neural network parametrized
by α and β and σ is the logistic sigmoid function and yij is the covariate of the
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edge connecting i with j.
Model inference. By denoting Θ = {π, µk, σ2

k, α, β} the set of the model
parameters introduced so far, we rely on a variational approach to approxi-
mate the intractable (integrated) log-likelihood: log p(A|Θ) = L(q(Z,C); Θ) +
DKL(q(Z,C)||p(Z,C|A,Θ)). In order to deal with a tractable family of distri-
butions, q(Z,C) is assumed to factorize into two terms

q(Z,C) = q(Z)q(C) =
N∏
i=1

q(zi)q(ci), (5)

in which it is also supposed

q(zi) = N (zi; µ̃φ(A)i, σ̃
2
φ(A)iIP ), (6)

where µ̃φ(·) : RN×N 7→ RN×P (respectively σ̃2
φ(·) : RN×N 7→ R+N ) is the

function mapping the normalized adjacency A = D−
1
2AD−

1
2 into the matrix of

the variational means (vector of the standard deviations), parametrized by the
two-layer GCN encoder gφ.

Finally, a standard assumption is made for variational cluster probabilities

q(C) =
N∏
i=1

M(ci; 1, γi), with
K∑
k=1

γik = 1, (7)

where γik represents the variational probability that node i is in cluster k.
Thanks to Equations (5)-(6)-(7), the evidence lower bound can be further

developed as

L =

∫
Z

∑
C

q(Z,C) log
p(A|Z,α, β)p(Z|C, µk, σ2

k)p(C|π)dZ

q(Z,C)

= E

∑
i6=j

Aij log ηij + (1−Aij) log(1− ηij)

− N∑
i=1

K∑
k=1

γikDKL(N (µ̃φ(A)i, σ̃
2
φ(A)iIP )||N (µk, σ

2
kIP ))

+
N∑
i=1

K∑
k=1

γik log(
πk
γik

),

(8)
where ηij = σ(α + βT yij − ||zi − zj ||2), DKL(·) denotes the KL divergence and
the expectation is taken with respect to the variational probability q(·). The
pseudo code of the optimization process is reported in Algorithm 1.

Algorithm 1 Estimation of DeepLPM

Input: adjacency matrix A, edge features Y
pretrain model = pretrain(A, 50 epochs) . pre-training to save initial weights
while L increases do

µ̃φ, σ̃
2
φ = GCN(A)

update γik, πk, µk and σ2
k by calculating derivations . explicit optimization

calculate the training loss (negative ELBO) −L
update neural net parameters φ, α and β via SGD . implicit optimization

Output: reconstructed graph Â, cluster probability matrix γ̂
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3 Numerical experiments

To benchmark DeepLPM with other competitors, we designed three types of
synthetic networks based on LPCM, SBM and from circle data. We emphasize
that all networks are generated by models different from ours. The goal here is to
assess the stability and the quality of the inference procedure we proposed. By
varying the value of two parameters δ and δ

′
in scenarios A (assortative) and B

(dissortative), we can model the proximity between each cluster and thus test the
robustness of our model in both simple and difficult cases. Contrary to standard
communities with strong transitivity (your-friend-is-my-friend effect), scenario
C describes the construction of three groups of nodes with little transitivity in
each. As demonstrated in Figure 1, DeepLPM has the highest ARI with a small
variance in all situations. Figure 2 shows the learned embeddings by three deep
models in scenario C, only DeepLPM preserves the original network topology.
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Fig. 1: Clustering ARI with different proximity rates in Sc.A and Sc.B.
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Fig. 2: Embeddings learned by ARVGA, VGAE and DeepLPM in Sc.C.

4 Analysis of Cora network

The Cora dataset contains 2,708 scientific publications classified in seven classes
and consists of 5,429 citation links. Most related works assume that the number
of clusters is equal to the number of classes used in supervised classification tasks,
whereas we argue that the class labels might not be in a one-to-one relation with
the detected communities in unsupervised clustering. Instead, an appropriate
cluster number should be obtained through model selection. Thus, we decided
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to use the class membership of each paper to build a tensor Y of dimension
D = 7 × 7 encoding the similarities between articles. For each pair of papers i
and j with category labels si and sj , Ysisj = 1 indicates that paper i belongs to
the class si and j belongs to the class sj , 0 otherwise.
Results. The model selection was conducted by varying the number of clusters
from 5 to 11, with the dimensionality of the latent space equal to 16. Based on
the evolution of training loss, the number of groups was estimated to be K = 6
with a clear minimum. Figure 4 shows the paper distributions when considering
the class labels for six groups. In contrast to the fact that each group contains
only one defined class, it is clear that new similarities between papers in different
categories emerge as a result of the addition of paper labels as covariates.

Next, to better understand the clustering results, we plotted the latent po-
sitions learned by DeepLPM using PCA in Figure 5, highlighting nodes with
degrees higher than 10. Those papers are more often cited by other papers and
can be more representative. Interestingly, when looking at this figure from left to
right, the content is changing from applied research to more theoretical learning,
and then from bottom to top, the topic of the articles is changing from case-
based methods and reinforcement learning to genetic algorithms, and finally to
neural networks and statistical models.

Furthermore, based on the publications ID, we selected several articles with
relatively large degree from each group and analyzed the information. For in-
stance, according to paper titles, we find that group #1 (red) focuses on dynamic
or temporal learning algorithms using probabilistic methods or reinforcement
learning; in group #3 (blue), papers are largely based on the analysis and devel-
opment of case studies; then, group #4 (cyan) contains articles on applications
of genetic algorithms and neural networks; group #6 (yellow) typically involves
statistical and machine learning models, etc.

Finally, we emphasize that, unlike most related works that consider super-
vised class labels as clusters in unsupervised learning, we encode this information
into edge features and estimate the number of clusters via model selection, which

Fig. 4: Partitions with covariates tak-
ing into account class categories in each
group on Cora.
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Fig. 5: Learned hidden space highlight-
ing nodes with degrees higher than 10.
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aids in the discovery of new node similarities hidden behind the supervised in-
formation, as demonstrated by the results.

5 Conclusion

We introduced DeepLPM to perform node clustering in an end-to-end man-
ner by integrating the GCN encoder with the LPM-based decoder. Numerical
experiments show that DeepLPM outperforms state-of-the-art methods. More-
over, real-world application on a scientific citation network was also proposed to
illustrate the interest of the methodology for unsupervised analysis.
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