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Abstract. The application of machine learning based decision making
systems in safety critical areas requires reliable high certainty predictions.

Reject options are a common way of ensuring a sufficiently high certainty
of predictions. While being able to reject uncertain samples is important,
it is also of importance to be able to explain why a particular sample was
rejected. However, explaining reject options is still an open problem. We
propose a model-agnostic method for locally explaining reject options by
means of interpretable models and counterfactual explanations.

1 Introduction

Nowadays, machine learning (ML) based decision making systems are omnipresent
– in particular, they are used in safety critical scenarios such as autonomous driv-
ing [1] and credit (risk) assessment [2]. Trust and reliability are critical aspects
of such decision making systems. Trust can be realized by transparency – i.e.
it is difficult to trust a system that we do not understand. It is common to
achieve transparency by means of explanations – i.e. providing explanations
of the system’s behavior [3]. Reliability means that we require the system to
consistently output high quality predictions. However, because the models are
build to output a prediction for every possible input, a high quality prediction
cannot always be guaranteed. Uncertain predictions are problematic in scenarios
where making mistakes can have serious consequences – in such cases it might
be better to refuse to output a prediction instead of making a potentially wrong
prediction [4]. For instance consider the example of a spam and phishing mail
filter: The filter is supposed to automatically sort out mails where it is certain
that the particular mails are malicious. However, in cases where the filter is
not absolutely certain about its classification, it should reject this mail and pass
it to a human for manual inspection of its content – e.g. rejected mails might
be passed to the user with an additional warning. In order to understand the
rejection and to support the further development of the filtering application, it is
helpful to get an explanation of why the filter was not able to classify the given
mail. To the best of our knowledge, the only existing work on explaining rejects
is [5], which deals with reject options for learning vector quantization (LVQ)
models. However, their proposed method is completely tailored towards LVQ
models – i.e. it is not applicable to any other models or reject options. In this
work, we propose a model-agnostic method for locally explaining any type of
reject option.
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2 Foundations

Reject Options Given an arbitrary classifier h : X → Y, a reject option [6] is
usually added by providing an additional function rh : X → R+ that measures
the certainty of classifying x⃗ and rejects a sample x⃗ if the certainty is below a
given threshold θ: rh(x⃗) < θ .We construct a new classifier h′ : X → Y ∪ {∅}
where we add a reject symbol ∅ to the set of possible predictions Y:

h′(x⃗) =

{
h(x⃗) if rh(x⃗) ≥ θ

∅ otherwise
(1)

Conformal Prediction for Implementing a Reject Option Assume that a (black-
box) probabilistic classifier h : X → Y of the following form is given: h(x⃗) =
argmax

y∈Y
p(y | x⃗), where p(y | x⃗) denotes the class wise probability as estimated

by the classifier h(·). A central building block of a conformal predictor [7] is a so
called non-conformity measure ϕh : X ,Y → R which measures how different a
given labeled sample is from a given set of labeled samples we have seen before.
In case of a probabilistic classifier h(·), a common non-conformity measure is
given as follows: ϕh(x⃗, y = j) = max

i̸=j
ph(y = i | x⃗) − ph(y = j | x⃗). For

calibrating (i.e. fitting) a conformal predictor based on h(·), we need another
labeled data set Dcalib ⊂ X × Y which was not used during the fitting of h(·) –
we compute the non-conformity αi of every sample from the calibration set by
applying ϕh(·): αi = ϕh(x⃗i, y = yi). For every new data point x⃗∗ ∈ X that is
going to be classified, we compute the non-conformity measure for every possible
label in Y. Next, the non-conformity scores of x⃗∗ are compared with the non-
conformity scores from the calibration set to compute p-values py=i(·) for every
possible classification of x⃗∗. The conformal predictor then selects the label with
the largest p-value as a prediction: h(x⃗∗) = argmax

i∈Y
py=i(x⃗∗). The credibility

of the prediction – i.e. how well the training set supports the prediction – is
given by the largest p-value: ψ(x⃗∗) = max

i
py=i(x⃗∗). We implement a reject

option Eq. (1) [4] using the credibility score:

rh(x⃗) = ψ(x⃗) = max
i

py=i(x⃗) (2)

Explanation Methodologies There exist popular methods for locally explaining
a given model h(·), instead of trying to come up with a global explanation [3]. A
common approach for local explanations is to build a local approximation of the
model h(·) which is then used for creating an explanation. A popular instance
of such methods is LIME [8], where an interpretable model is fit to a set of
labeled perturbed samples – the labeling is done using the original model. The
final local explanation is then constructed using the most relevant features of the
local approximation – in order to get a meaningful explanation, the features must
be interpretable and meaningful (e.g. super-pixels in case of images). Another
method based on local approximations is Anchors [9], which compute if-then
rules based explanations that locally explain the prediction of h(·).
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Counterfactual explanations (often just called counterfactuals) [10] are a
prominent instance of contrasting explanations, which state a change to some
features of a given input such that the resulting data point, called the counter-
factual, causes a different behavior of the system than the original input does.
Thus, one can think of a counterfactual explanation as a suggestion of actions
that change the model’s behavior/prediction. One reason why counterfactual
explanations are so popular is that there exists evidence that explanations used
by humans are often contrasting in nature [11] – i.e. people often ask questions
like “What would have to be different in order to observe a different outcome?”.
In order to keep the explanation (suggested changes) simple – i.e. easy to un-
derstand – an obvious strategy is to look for a small number of changes so that
the resulting sample x⃗cf (counterfactual) is similar/close to the original sample
x⃗orig. This is aimed to be captured by the following optimization problem [10]:
argmin
x⃗cf ∈Rd

ℓ
(
h(x⃗cf), y

′)+C · θ(x⃗cf, x⃗orig), where ℓ(·) denotes a loss function, y′ the

target prediction, θ(·) a penalty for dissimilarity of x⃗cf and x⃗orig, and C > 0
denotes the regularization strength. In the following, we assume a binary classi-
fication problem: In this case, we denote a counterfactual x⃗cf of a given sample
x⃗orig under a prediction function h(·) simply as x⃗cf = CF(x⃗orig, h) and drop the
target label y′ because it is uniquely determined.

3 Local Approximations for Explaining Reject

We propose a model-agnostic approach for locally explaining arbitrary reject
options – i.e. our method does not need access to the reject option or the
underlying ML model, access to a prediction interface is sufficient. Instead
of explaining the reject option globally, we aim for a local explanation – i.e.
explaining the reject of a particular sample. Given a sample x⃗orig ∈ X which is
rejected by the reject option, we sample a fixed number of samples {x⃗i} from
the neighborhood around x⃗orig and label each sample whether it is also rejected
or not:

yi =

{
1 if r(x⃗i) < θ

0 otherwise
∀ x⃗i ∈ Bϵ(x⃗orig) (3)

where Bϵ(x⃗orig) denotes a fixed number of samples in the neighborhood of x⃗orig.
Then, we fit an interpretable classifier hlocal (e.g. a linear model or a decision
tree) to these samples Dlocal = {(x⃗i, yi)}. We propose to either use hlocal(·) as
an explanation – e.g. using the obtained feature importances or learned decision
rules as an explanation –, or a counterfactual explanation x⃗cf = CF(x⃗orig, hlocal)
of hlocal(·) as an explanation of the reject of x⃗orig.

Formally, we propose two different realizations of a local explanation Ψ at
x⃗orig under a given reject option r(·):

Ψ(r, x⃗orig) =

{
FRI(hlocal)

CF(x⃗orig, hlocal)
(4)

where FRI(·) denotes the feature relevance as obtained from a given model. We
empirically evaluate and compare both types of explanations in Section 4.
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4 Experiments

We empirically evaluate our proposed explanations under two different aspects:
computational aspects like sparsity and accuracy – i.e. checking if the original
sample is also rejected under the local approximation – of the computed explana-
tions; ground truth recovery rate (goodness) of the explanations by evaluating if
and how well the explanations match the ground truth – i.e. identifying the rel-
evant features. The implementation of the experiments is available on GitHub1.

4.1 Data Sets

We consider the following data sets for our empirical evaluation – all data sets
are scaled and standardized: “Wine data set” [12], “Breast cancer data set” [13]
“Flip data set” [14], “t21 data set” [15].

4.2 Setup

Since our proposed explanation methodology is completely model-agnostic, we
evaluate it on a set of diverse classifiers: k-nearest neighbors classifier (kNN),
Gaussian naive Bayes classifier (GNB), random forest classifier (RandomForest).
We always use conformal prediction for realizing a credibility based reject op-
tion Eq. (2). We perform hyperparameter tuning by a grid search and try to find
an appropriate rejection threshold by using the Knee/Elbow method [16]. We
run all experiments (combination of data sets and classifiers) in a 5-fold cross
validation. We use a decision tree as an interpretable local approximation. After
fitting the classifier, we apply the reject option to all samples from the test set
and compute explanations for those that are rejected by the reject option. We
always compute two explanations Eq. (4): feature relevance profile according to
the Gini importance from the decision tree classifier, and a counterfactual under
the local approximation.

When evaluating algorithmic properties, we not only compute the accuracy
of the local approximation, but also compute the sparsity (l0-norm) of both ex-
planations. For evaluating the goodness of the explanations, we create scenarios
with known ground truth as follows: For each data set, we select a random subset
of features (30%) and perturb these in the test set by adding Gaussian noise –
we then check which of these samples are rejected due to the noise and compute
explanations of these samples only. Finally, we evaluate for both explanations
how many of the relevant features are recovered and included in the explanation.

4.3 Results & Discussion

We use the following abbreviations: FeatImp – Feature importances as obtained
from the local approximation; Cf – Counterfatual explanation.

Algorithmic Properties We report the mean accuracy and sparsity in Table 1.
We observe that the local approximation is usually sufficiently good and the
final explanations are very sparse – i.e. we obtain low-complexity explanations.

1https://github.com/andreArtelt/LocalModelAgnosticExplanationReject
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Table 1: Algorithmic properties – Mean (incl. variance) accuracy and sparsity –
larger values are better for accuracy, while smaller values are better for sparsity.

DataSet Accuracy FeatImp Cf

kNN

Wine 0.80± 0.16 4.5± 1.98 1.25± 0.23
Breast Cancer 0.92± 0.00 5.12± 1.66 1.25± 0.19

t21 0.96± 0.00 3.90± 3.43 1.07± 0.27
Flip 0.31± 0.07 5.21± 1.13 1.00± 0.00

GNB

Wine 0.92± 0.00 4.57± 1.17 1.11± 0.10
Breast Cancer 0.88± 0.00 3.83± 1.38 1.07± 0.07

t21 0.78± 0.15 1.12± 1.71 0.71± 0.26
Flip 0.83± 0.01 1.73± 0.54 1.00± 0.00

RandomForest

Wine 0.80± 0.16 3.26± 1.64 1.43± 0.37
Breast Cancer 1.00± 0.00 1.07± 2.35 0.52± 0.48

t21 0.95± 0.00 3.75± 2.59 1.22± 0.30
Flip 0.50± 0.06 5.05± 1.33 1.05± 0.05

Table 2: Goodness of explanations – Mean (incl. variance) recall of correctly
identified relevant features (larger numbers are better).

DataSet Accuracy FeatImp Cf

kNN

Wine 0.75± 0.15 0.53± 0.03 0.28± 0.15
Breast Cancer 0.89± 0.02 0.50± 0.04 0.23± 0.12

t21 0.78± 0.02 0.56± 0.03 0.36± 0.15
Flip 0.40± 0.14 0.30± 0.08 0.04± 0.03

GNB

Wine 0.85± 0.04 0.56± 0.06 0.43± 0.18
Breast Cancer 0.97± 0.00 0.39± 0.09 0.23± 0.12

t21 0.60± 0.24 0.45± 0.13 0.36± 0.15
Flip 0.91± 0.01 0.40± 0.14 0.38± 0.18

RandomForest

Wine 1.00± 0.00 0.51± 0.13 0.39± 0.16
Breast Cancer 1.00± 0.00 0.18± 0.08 0.16± 0.09

t21 0.62± 0.11 0.58± 0.05 0.50± 0.15
Flip 0.61± 0.08 0.54± 0.08 0.38± 0.15

Furthermore, we observe that counterfactual explanations of the local approxi-
mation are consistently sparser than the obtained feature importance.

Goodness of Explanations The mean recall of correctly recovered relevant fea-
tures is given in Table 2. We observe that the perturbation does not strongly
affect the accuracy. However, both explanations have trouble to recover all
perturbed features – although the feature importance explanation recovers con-
sistently more perturbed features than the counterfactual explanation, which is
due to the sparsity objective. In addition, it seems that the local approximation
is not sensitive enough to the applied perturbations – the accuracy is pretty
high, but still the explanations have trouble identifying all perturbed features.

5 Summary & Conclusion

In this work, we proposed a model-agnostic approach for explaining reject op-
tions, by using local interpretable approximation of the reject option and explain
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the reject locally either by the local approximation itself or by counterfactuals
of this local approximation. We empirically evaluated these two explanations
under computational as well as qualitative aspects. We observed reasonable
performance of both explanations – in particular counterfactuals were able to
come up with low complexity explanations but identified fewer of the relevant
features. The empirical evaluation in this work focuses on computational proxies
only. However, it still remains unclear if and how useful our proposed explana-
tions are to humans. Since it is difficult to phrase “usefullness” as a scoring
function, a proper use study is needed. We leave these aspects as future work.
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[5] André Artelt, Johannes Brinkrolf, Roel Visser, and Barbara Hammer. Explaining reject
options of learning vector quantization classifiers, 2022.

[6] Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, and Jesse Davis.
Machine learning with a reject option: A survey. arXiv preprint arXiv:2107.11277, 2021.

[7] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. J. Mach. Learn.
Res., 9:371–421, 2008.
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